
COMPUTATIONAL ERGODIC THEORY

Vorlesung im Wintersemester 2008/09
von Prof. Dr. Fritz Colonius

Universität Augsburg

Autor: Christoph Kawan



Contents

1 Introduction 3

2 Invariant Measures 3

2.1 σ-Algebras and Probability Measures . . . . . . . . . . . . . 3

2.2 Invariant Measures . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Shift Transformations . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Isomorphic Transformations . . . . . . . . . . . . . . . . . . . 21

2.6 Coding Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Birkhoff’s Ergodic Theorem 27

3.1 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Birkhoff’s Ergodic Theorem . . . . . . . . . . . . . . . . . . . 31

3.3 Absolutely Continuous and Singular Invariant Measures . . 41

4 More on Ergodicity 44

4.1 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Recurrence and First Return Time . . . . . . . . . . . . . . . . 48

4.3 Mixing Markov Shift Transformations . . . . . . . . . . . . . 52

5 Entropy 56

5.1 Definition and Elementary Properties . . . . . . . . . . . . . 56

5.2 Conditional Entropy . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Properties of Entropy . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Examples of Calculation of Entropy . . . . . . . . . . . . . . 71

2



1 Introduction

Literature: Geon Ho Choe, Computational Ergodic Theory, Springer 2005.
Origins: Statistical Mechanics, Boltzmann (1887), Birkhoff’s Ergodic Theo-
rem.

Let X be a set and assume that we can associate a probability measure to
subsets of X, μ(A) ∈ [0, 1], A ⊂ X. Let T : X � with

μ(A) = μ(T−1(A)) for all A ⊂ X.

(T preserves μ, μ is invariant under T.) Let N ∈ N.

1
N

# {n ∈ {1, . . . , N} | Tn(x) ∈ B} N→∞−−−→ ?

Birkhoff’s Ergodic Theorem: → μ(B), if we cannot decompose X into two
subsets with positive probability measure which remain invariant under T
(Ergodic Hypothesis).

Example: Let X ⊂ R. One can define probability measures using a density
ρ with respect to Lebesgue measure:

μ(A) =
∫

A
ρ(x)dx

if ρ(x) ≥ 0 and
∫

X ρ(x)dx = 1. T leaves μ invariant if∫
A

ρ(x)dx =
∫

T−1(A)
ρ(x)dx for all A ⊂ X.

Let X = [0, 1], T(x) = 4x(1 − x) (logistic map). Then the invariant density
is

ρ(x) =
1

π
√

x(1 − x)
.

Thus, for A ⊂ [0, 1]∫
A

dx

π
√

x(1 − x)
=
∫

T−1(A)

dx

π
√

x(1 − x)
.

2 Invariant Measures

2.1 σ-Algebras and Probability Measures

In the following, X is a nonvoid set. A σ-algebra on X is a family A of
subsets of X with
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Figure 1: Graph of ρ, ρ(x) =
[

π
√

x(1 − x)
]−1

.

(i) ∅, X ∈ A,

(ii) A ∈ A implies X\A ∈ A,

(iii) An ∈ A, n ∈ N, implies
⋃

n∈N An ∈ A.

A measure is a map μ : A → [0, ∞] = [0, ∞) ∪ {∞} with

(i) μ(∅) = 0,

(ii) An ∈ A (n ∈ N) with An ∩ Am = ∅ for n �= m implies

μ

( ⋃
n∈N

An

)
=

∞

∑
n=1

μ(An).

If μ(X) = 1, then μ is called a probability measure.

2.1 Examples:

(i) Counting measure:

μ(A) := #A (number of elements in A).

(ii) Dirac measure:

δx(A) :=
{

1 for x ∈ A,
0 for x /∈ A.
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A pair (X,A) is called a measurable space. A triple (X,A, μ) is called a mea-
sure space. A measure space is complete if

A ∈ A, μ(A) = 0 and N ⊂ A ⇒ N ∈ A and μ(N) = 0.

Fact: Every measure space can be extended to a complete measure space.

An n-dimensional rectangle in Rn is a set of the form

R = [a1, b1]× · · · × [an, bn]

with ai < bi for i = 1, . . . , n (also open and half-open intervals are allowed).
Let R be the set of all rectangles and define

μ : R → [0, ∞], μ(R) :=
n

∏
i=1

(bi − ai).

We can extend μ to a measure on the smallest σ-algebra containing R. The
corresponding complete measure is the familiar Lebesgue measure.

f : (X,A) → R is called measurable if f−1(I) ∈ A for every open interval
I ⊂ R. A characteristic function s : X → R is a function defined by

s(x) :=
{

1 for x ∈ E
0 for x /∈ E

for some E ∈ A. We also write s = 1E. A simple function s : X → R is a
function of the form

s(x) =
n

∑
i=1

αisi(x)

with αi ∈ R, n ∈ N, and characteristic functions si. Every simple function
is measurable, as can easily be shown.

Let f be a measurable function with f (x) ≥ 0 for all x ∈ X. Then there
exists an increasing sequence (sn) of simple functions with sn(x) → f (x)
and sn+1(x) ≥ sn(x) for all x ∈ X.

Idea of the proof: Let f be a measurable function. Define

sn(x) :=
{ i−1

2n if i−1
2n ≤ f (x) ≤ i

2n , i = 1, . . . , n2n,
n if f (x) > n.

Let X be a metric space. Then the smallest σ-algebra containing all open
sets is called the Borel-σ-algebra. The corresponding measurable sets are
called Borel measurable and the measurable functions f : X → R are called
Borel measurable functions. Every continuous function is Borel measurable.
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2.2 Example: Let S = {0, 1}. For every p ∈ (0, 1) define a probability
measure on A := P(S) by

μ̄p({0}) := p, μ̄p({1}) := 1 − p.

Define

X :=
∞

∏
1
S = SN

with elements x ∈ X, x = (x1, x2, x2, . . .), where xi ∈ {0, 1}. Let

[a1, . . . , an] := {x ∈ X | xi = ai for i = 1, . . . , n}
for ai ∈ {0, 1}, i = 1, . . . , n. These sets are called cylinder sets. Let R be the
set of all cylinder sets. Define μp : R → [0, 1] by

μp([a1, . . . , an]) := pk(1 − p)n−k,

where k is the number of zeros in (a1, . . . , an). Then μp can be extended to
a probability measure on the σ-algebra generated by the cylinder sets.

Recall that every element (b1, b2, b3, . . .) of X represents a real number x ∈
[0, 1] via

x =
∞

∑
i=1

bi2−i.

This representation is unique if we exclude tails only consisting of ones.
Then μp can be considered as a measure on [0, 1]. For p = 1

2 this is the
Lebesgue measure. In order to show this, note that

[a1, . . . , an] =

{
x ∈ [0, 1] : x =

n

∑
i=1

aib−i +
∞

∑
i=n+1

bi2−i, bi ∈ {0, 1}
}

.

This set has Lebesgue measure

μ([a1, . . . , an]) = μ

({
2−(n+1)

∞

∑
i=0

bi2−i : bi ∈ {0, 1}
})

= μ([0, 2−n]) = 2−n.

On the other hand,

μ1/2([a1, . . . , an]) =
( 1

2

)k (
1 − 1

2

)n−k
= 2−n.

μp is called the Bernoulli measure, see also Halmos [2, Sec. 3.8]. ♦

A measure μ is called continuous if μ({a}) = 0 for all a ∈ X.1

1Sometimes a measure with this property is also called nonatomic. An example for a
measure which is not continuous is the Dirac measure δx .
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2.3 Proposition: The Bernoulli measures μp, p ∈ (0, 1), are continuous.

Proof: For a = (a1, a2, a3, . . .) ∈ X we have

μp({a}) = μp

(
∞⋂

n=1

[a1, . . . , an]

)
∀n≤ μp ([a1, . . . , an])

= pkn(1 − p)n−kn ≤ pkn → 0,

where kn is the number of zeros in (a1, . . . , an). The latter holds, since we
have excluded tails consisting of ones. This implies μp({a}) = 0. �
Let p(x) be a property whose validity depends on x ∈ X. We say that p
holds for μ-almost all x ∈ X if p(x) is true for all x ∈ X\N where μ(N) = 0.

Integration with respect to a measure μ: Let E ∈ A. Then 1E is integrable,
if μ(E) < ∞ and we define ∫

X
1Edμ := μ(E).

Let s = ∑n
i=1 αi1Ei be a simple function with μ(Ei) < ∞ for i = 1, . . . , n.

Then we define ∫
X

sdμ :=
n

∑
i=1

αi

∫
X
1Eidμ.

We call f : X → R with f (x) ≥ 0 for all x ∈ X Lebesgue-integrable with
respect to μ, if there is an increasing sequence of simple functions sn such
that

sn(x) → f (x) for μ-almost all x ∈ X

and we define ∫
X

f dμ := lim
n→∞

∫
X

sndx,

provided the limit is finite. For a general f : X → R decompose f =
f+ − f− with

f+(x) := max{0, f (x)}, f−(x) := max{0,− f (x)}
and define ∫

X
f dμ :=

∫
X

f+dμ −
∫

X
f−dμ,

provided both integrals are finite. Similarly, if f : X → C, decompose f in
real and imaginary parts.

Recall the following properties of the integral:

(i) Monotone convergence:∫
X

lim
n→∞

fndμ = lim
n→∞

∫
X

fndμ,

if ( fn) is monotone increasing or decreasing (almost everywhere).
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(ii) Fatou’s Lemma: ∫
X

lim inf
n→∞

fndμ ≤ lim inf
n→∞

∫
X

fndμ.

(iii) Lebesgue’s Theorem on dominated convergence.

The Lp-spaces Lp(X, R, μ) and Lp(X, C, μ) for p ∈ [1, ∞) are the Banach
spaces of measurable functions f : X → R ( f : X → C) such that the
integral over | f |p exists. The norm is defined by2

‖ f‖p :=
(∫

X
| f |pdμ

)1/p

.

2.2 Invariant Measures

2.4 Definition: Let (X1,A1, μ1) and (X2,A2, μ2) be measure spaces and T :
X1 → X2 measurable, i.e., T−1(E) ∈ A1 for all E ∈ A2. The map T is called
measure preserving if

μ2(E) = μ1(T−1(E)) for all E ∈ A2.

If X1 = X2, A1 = A2 and μ1 = μ2 =: μ, then we call T a transformation,
and μ is called T-invariant.

2.5 Theorem: Let (X,A, μ) be a measure space and T : X � a measurable
map. Then the following are equivalent:

(i) T is a transformation.

(ii) For all functions f which are integrable with respect to μ we have∫
X

f dμ =
∫

X
f ◦ Tdμ.

(iii) Define a linear operator UT on Lp(X, C, μ) for p ∈ [1, ∞) by

UT f := f ◦ T for all f ∈ Lp(X, C, μ).

Then UT is norm-preserving, i.e.,

‖ f‖p = ‖Ut f‖p for all f ∈ Lp(X, C, μ).

Proof: “(ii) ⇒ (i)”: Let f = 1E. Then

μ(E) =
∫

X
1Edμ

(ii)
=

∫
X
1E ◦ Tdμ =

∫
X
1T−1(E)dμ = μ(T−1(E)).

2Actually the elements of the Lp-spaces are equivalence classes of functions, whereby
two functions are considered to be equivalent if they coincide almost everywhere.
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“(i) ⇒ (ii)”: We can write f ∈ L1(X, C, μ) as f = f1 − f2 + i( f3 − f4) with
fi ≥ 0. Hence, it suffices to prove (ii) for f ≥ 0. As above, for f = 1E∫

X
f dμ = μ(E)

(i)
= μ(T−1(E)) =

∫
X
1T−1(E)dμ

=
∫

X
1E ◦ Tdμ =

∫
X

f ◦ Tdμ.

By linearity of the integral this is also true for simple functions. By our
construction every f ∈ L1(X, C, μ) with f ≥ 0 can be approximated by an
increasing sequence of simple functions sn: sn(x) → f (x) for all x ∈ X.
Then also sn(T(x)) → f (T(x)) for all x ∈ X and sn ◦ T are also simple
functions, and the sequence is monotone increasing. Thus, by monotone
convergence∫

X
f ◦ Tdμ = lim

n→∞

∫
X

sn ◦ Tdμ = lim
n→∞

∫
X

sndμ =
∫

X
f dμ.

“(i) ⇔ (iii)”: This is proved similarly as the equivalence of (i) and (ii).
�

2.3 Examples

2.6 Example: Let X = [0, 1) and T(x) = x + θ (mod 1), where θ ∈ [0, 1).
Then the Lebesgue measure is invariant under T. Suppose θ = p

q ∈ Q.
Then

Tq(x) = x + qΘ (mod 1) = x + p (mod 1) = x.

Hence, every point is periodic. So the interesting case is when θ is irra-
tional.3 ♦

2.7 Example: Let X = [0, 1) and T(x) = 2x (mod 1). The preimage of an
interval E consists of two intervals, each of them with half the length of E.
Again, the Lebesgue measure (i.e., the length of intervals) is an invariant
measure. ♦

2.8 Example: Let X = [0, 1) and

T(x) =
{

2x (mod 1) for 0 ≤ x < 1
2 ,

4x (mod 1) for 1
2 ≤ x < 1.

Again, the Lebesgue measure is invariant. ♦
3Note that for rational θ the Lebesgue measure is not the only invariant measure. Indeed,

there is an infinite number of invariant measures.

9



y

1

0,8

0,6

0,4

0,2

0

x

10,80,60,40,20

Figure 2: T(x) = 2x (mod 1), see Ex. 2.7.
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Figure 3: T from Ex. 2.8.
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Figure 4: T(x) = 4x(1 − x), see Ex. 2.9.

2.9 Example: (The logistic map with parameter 4)
Let X = [0, 1) and T(x) = 4x(1 − x). We claim that there is an invariant
measure μ with density

ρ(x) =
1

π
√

x(1 − x)

with respect to Lebesgue measure, and μ is a probability measure. We have
to show that

μ(A) =
∫

A
ρ(x)dx = μ(T−1(A)) =

∫
T−1(A)

ρ(x)dx.

Proof: Use the MAPLE program logistics1. ♦

2.10 Example: (β-transformation)
Let β := 1

2(
√

5 + 1). This is a solution of

0 = β2 − β − 1,

or equivalently, β − 1 = 1
β . Hence, β is the golden section. Define X =

[0, 1). Then the transformation is given by

T(x) = βx (mod 1).
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There is an invariant measure μ with a density with respect to Lebesgue
measure, given by

ρ(x) =

⎧⎨
⎩

β3

1+β2 for 0 ≤ x < 1
β ,

β2

1+β2 for 1
β ≤ x.

♦

2.11 Example: (The Gauß-Transformation)
Let X = [0, 1) and define

T(x) :=
{ 1

x (mod 1) for 0 < x < 1,
0 for x = 0.

[GRAPH]

Gauß (1812, in a letter to Laplace): There is an invariant probability mea-
sure with a density with respect to Lebesgue measure, given by

ρ(x) =
1

ln(2)
1

x + 1
.

For the proof it suffices to show that

(i)
∫

T−1((0,a))
dx

x+1 =
∫
(0,a)

dx
x+1 ,

(ii)
∫ 1

0
dx

x+1 = ln(2).

Statement (ii) is proved by

∫ 1

0

dx
x + 1

= [ln(x + 1)]10 = ln(2)− ln(1)︸ ︷︷ ︸
=0

= ln(2).

For the proof of (i) note that T−1((0, a)) is the disjoint union of the intervals
( 1

n+a , 1
n ], n ∈ N, since for x ∈ [0, 1) we have

1
x (mod 1) ∈ (0, a) ⇔ ∃n ∈ N : 1

x ∈ (n, n + a)

⇔ ∃n ∈ N : x ∈ ( 1
n+a , 1

n

)
.
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This implies
∫

T−1((0,a))

dx
x + 1

= lim
N→∞

N

∑
n=1

∫ 1
n

1
n+a

dx
x + 1

= lim
N→∞

N

∑
n=1

[ln(x + 1)]
1
n

1
n+a

= lim
N→∞

N

∑
n=1

[
ln
(

n + 1
n

)
− ln

(
n + a + 1

n + a

)]
= lim

N→∞
[ln(N + 1)− ln(N + a + 1) + ln(1 + a)]

= lim
N→∞

[
− ln

(
N + a + 1

N + 1

)
+ ln(1 + a)

]

= ln(1 + a) =
∫ a

0

dx
x + 1

.

♦

2.12 Example: Let X = R and T(x) = x − 1
x . Then T preserves Lebesgue

measure, i.e.,
∫ ∞
−∞ f (x)dx =

∫ ∞
−∞ f (x − 1

x )dx for all f ∈ L1(R, C, μ).
In order to show that, let y ∈ R. Then the preimage of y is given by

y = x − 1
x = x2−1

x ⇔ x2 − xy − 1 = 0 ⇔ x = y
2 ± 1

2

√
y2 + 4.

Thus, T−1 of an interval (a, b) is the union of the two intervals(
1
2 (a −

√
a2 + 4, 1

2(b −
√

b2 + 4)
)

,
(

1
2(a +

√
a2 + 4, 1

2 (b +
√

b2 + 4)
)

.

The sum of their lengths is b − a, which proves the assertion. ♦

2.13 Example: Let X = R, T(x) = 1
2(x − 1

x ). Then T has an invariant
probability measure with density

ρ(x) =
1

π(1 + x2)

with respect to Lebesgue measure. The preimage T−1((a, b)) is the union
of the two intervals(

a −
√

a2 + 1, b −
√

b2 + 1
)

,
(

a +
√

a2 + 1, b +
√

b2 + 1
)

.

Now

μ((a, b)) =
1
π

∫ b

a

dx
1 + x2 =

1
π
(arctan(b)− arctan(a))

and

μ(T−1((a, b))) =
1
π

∫ b−√
b2+1

a−√
a2+1

dx
1 + x2

= 1
π

(
arctan(b −

√
b2 + 1)− arctan(a −

√
a2 + 1)

+ arctan(b +
√

b2 + 1)− arctan(a +
√

a2 + 1)
)
.
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By using the trigonometric identity

arctan
(

u +
√

u2 + 1
)
+ arctan

(
u −

√
u2 + 1

)
≡ arctan(u)

we obtain
μ(T−1((a, b))) = 1

π (arctan(b)− arctan(a)) .

Furthermore,

1
π

∫ ∞

−∞

dx
1 + x2 =

1
π

lim
x→∞

(arctan(x)− arctan(−x)) = 1.

This transformation T comes from Newton’s method applied to f (x) =
1 + x2:

xn+1 = xn − f (xn)

f ′(xn)
= xn − 1 + x2

n

2xn
=

2x2
n − 1 − x2

n

2xn
= 1

2

(
xn − 1

xn

)
.

♦

As a motivation for the following example consider again the map T(x) =
x + θ (mod 1) on X = [0, 1). The interval [0, 1) can be identified with S1 =
{z ∈ C | |z| = 1} via the map x �→ e2πix, [0, 1) → S1. Addition modulo
one defines a group structure on S1, where the neutral element is 0 and
the inverse of x ∈ [0, 1) is given by −x + 1, since x + (−x + 1) (mod 1) =
1 (mod 1) = 0. Addition and inversion are continuous on S1.

2.14 Example: (Endomorphisms of compact groups)
A topological group G is a group which also is a topological space such that
the group operations are continuous, i.e., the maps

(g1, g2) �→ g1g2, G × G → G,

g �→ g−1, G → G,

are continuous. We also require that G has the Hausdorff property: For
g1, g2 ∈ G with g1 �= g2 there are disjoint open sets A1 and A2 with g1 ∈ A1
and g2 ∈ A2. An endomorphism of a topological group G is a map ϕ :
G → G which is a group homomorphism and continuous. We will use the
following

THEOREM: For a compact topological group G there is a unique measure μ (on
the Borel-σ-algebra of G) such that μ(G) = 1 and for all open sets A ⊂ G and all
x ∈ G

μ(A) = μ(xA) (1)

where xA = {xa | a ∈ A}.

A measure with the property (1) is also called left invariant, and the unique
measure μ of the theorem is called the Haar measure on G. An example for

14



Haar measure is Lebesgue measure on [0, 1]/ ∼ ∼= S1 ∼= R/Z, where ∼
is the equivalence relation which identifies 0 and 1 and every other point
only with itself. This space is an abelian compact group with the addition
modulo one.

CLAIM: A surjective endomorphism Φ of a compact topological group pre-
serves the Haar measure (Reference: Pedersen [3]).

Proof: Let μ be the Haar measure. Define

ν(E) := μ(Φ−1(E))

for all measurable sets E ⊂ G. Then ν is a probability measure as can easily
be verified. We want to show that ν = μ. Due to the theorem it suffices to
show that ν is left invariant: Write an arbitrary element of G as Φ(x). Then

y ∈ Φ−1(Φ(x)A) ⇔ Φ(y) ∈ Φ(x)A

⇔ Φ(x)−1Φ(y) ∈ A

⇔ Φ(x−1y) ∈ A

⇔ x−1y ∈ Φ−1(A)

⇔ y ∈ xΦ−1(A).

Hence, Φ−1(Φ(x)A) = xΦ−1(A). Thus,

ν(Φ(x)A)
def
= μ(Φ−1(Φ(x)A))) = μ(xΦ−1(A)) = μ(Φ−1(A))

def
= ν(A).

Since Φ(x) is an arbitrary element of G, ν is left invariant. ♦

2.15 Example: (The baker’s transformation)
Let X = [0, 1]× [0, 1] and

T(x) =
{

(2x, 1
2 y) for 0 ≤ x ≤ 1

2 , y ∈ [0, 1],
(2x − 1, 1

2 (y + 1)) for 1
2 < x ≤ 1, y ∈ [0, 1].

This map preserves Lebesgue measure on the unit square. (Note that T is
not continuous. The first component can also be written as 2x (mod 1).) See
also the MAPLE program image_baker. ♦

2.16 Example: (Arnold’s Cat Map, a toral automorphism)

Let T2 = R2/Z2. Then the matrix A :=
(

2 1
1 1

)
defines a transformation

from T2 to T2 by

T(x, y) = (2x + y (mod 1), x + y (mod 1)).

Indeed: A defines a linear map LA : R2 � (x �→ Ax). Since all entries of
A are integers, LA maps Z2 to Z2. Since det A = 1, A is invertible and
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also A−1 has only integer entries. Hence, also LA−1 = L−1
A maps Z2 to Z2.

Therefore, A induces a bijective map T : T2 � by

π ◦ LA = T ◦ π,

where π : R2 → R2/Z2 is the natural projection, mapping x to its equiva-
lence class x + Z2. That is, the following diagram commutes.

R2 LA−−−→ R2

π

⏐⏐ ⏐⏐ π

T2 −−−→
T

T2

Let x = x′ + m with m ∈ Z2, i.e., π(x) = π(x′). Then π(LA(x)) =
π(LA(x′) + La(m)) = π(LA(x)), since La(m) ∈ Z2. The same is true for
T−1. This proves that T is well-defined. The invariant measure is the two-
dimensional Lebesgue measure. See the MAPLE program Image_Arnold.

♦

2.17 Example: (The Λ-transformation)
Let X = [0, 1]. For 0 < c < 1 define the Λ-transformation

τc(x) :=
{ 1

c x for 0 ≤ x ≤ c,
− 1

1−c x + 1
1−c for c < x ≤ 1.

The Lebesgue measure is invariant, since the preimage of an interval E is
the union of two intervals with total length equal to the length of E. ♦

2.18 Example: (The truncated Λ-transformation)
Let X = [0, 1] and for 1

2 < a < 1 define b := 2a−1
a . Let

Ta(x) :=
{ 1−a

b x + a for 0 ≤ x ≤ b,
a

1−a (−x + 1) for b < x ≤ 1.

Then Ta(b) = 1, Ta(0) = a , Ta(1) = 0 and Ta(a) = a. The latter follows
from b < a which – by definition of b – is equivalent to (a − 1)2 > 0. We
have T−1

a ({a}) = {0, a}. Therefore, δa is an invariant measure. There is a
more interesting invariant measure μ which has a density with respect to
Lebesgue measure. We have

Ta([0, a]) = [a, 1] and T([a, 1]) = [0, a],
T−1

a ([0, a]) = [a, 1] ∪ {0},

T−1
a ([a, 1]) = [0, a].
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Figure 5: The Lambda Transformation from Ex. 2.17 for c = 3
4 .
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Figure 6: The Truncated Lambda Transformation from Ex. 2.18 for a = 3
4 .
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Hence, if μ is an invariant measure with a density with respect to Lebesgue
measure, then

μ([0, a]) = μ([a, 1] ∪ {0}) = μ([a, 1]) + μ({0})︸ ︷︷ ︸
=0

= μ([a, 1]).

Since X = [0, 1] = [0, a] ∪ [a, 1], it holds that μ([0, a]) = 1
2 = μ([a, 1]). If μ is

invariant under Ta, then it is also invariant under T2
a , since4

μ(T−2
a (E)) = μ(T−1

a (E)) = μ(E).

The restrictions of T2
a to [0, a] and [a, 1] are well-defined with invariant mea-

sures 1
a dx and 1

1−adx, respectively. We obtain an invariant measure for T2
a

with density

ρ(x) =

{
1
2a for 0 ≤ x ≤ a,
1

2(1−a) for a < x ≤ 1.

An easy calculation shows that this is also an invariant measure for Ta.
♦

2.4 Shift Transformations

Consider the set of symbols {1, . . . , k}. Define the set

X :=
∞

∏
1
{1, . . . , k}

of sequences with entries in {1, . . . , k} (k = 2: binary sequences). Let
p1, . . . , pk ≥ 0 with ∑k

j=1 pj = 1. This defines a probability measure on
{1, . . . , k}. For t ≥ 1 define a block or cylinder set of length n by

[a1, . . . , an]t,...,t+n−1 := {(x1, x2, . . .) | xt = a1, xt+1 = a2, . . . , xt+n−1 = an} .

Define μ on cylinder sets by

μ ([a1, . . . , an]t,...,t+n−1) := pa1 pa2 . . . pan ∈ [0, 1],
μ(∅) := 0.

We have

X =
k⋃

i=1

[i]1 ⇒ μ(X) =
k

∑
i=1

pi = 1.

4For an arbitrary map T : X �, n ∈ N, and A ⊂ X we define T−n(A) := {x ∈
X | f n(x) ∈ A}, i.e., the preimage of A under the nth iterate of T.
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Then we can extend μ to the σ-algebra generated by the cylinder sets and
get a probability measure. The natural map to consider on the set X is the
shift:

θ : X �, (x1, x2, x2, . . .) �→ (x2, x3, . . .).

θ is called the Bernoulli shift and X is called the Bernoulli shift space. The
measure μ is shift-invariant:

μ
(

θ−1([a1, a2, . . . , an]t,...,t+n−1)
)
= μ ([a1, a2, . . . , an]t+1,...,t+n) = pa1 · . . . · pan .

Analogous for X = ∏∞
−∞{1, . . . , k}.

A stochastic k × k-matrix P = (pij) is a matrix with entries pij ≥ 0 and

∑
j

pij = 1 ∀i (the row sums are equal to one).

If P is a stochastic matrix, then Pn (n ∈ N) is a stochastic matrix. In fact,

∑
j
(P2)ij = ∑

j
∑
k

pik pkj = ∑
k

∑
j

pik pkj = ∑
k

pik ∑
j

pkj︸ ︷︷ ︸
=1

= 1.

Analogously this works for general n. Interpretation: pij is the probability
to go from i to j. (Pn)ij is the probability to go from i to j in n steps.

A stochastic matrix P is called irreducible if for all i, j there is m ∈ N with
(Pm)ij > 0.

Convention: We write vP for the product of a row vector v and a matrix P.

2.19 Lemma: Let P ∈ Rk×k be irreducible. Then every eigenvector w ≥ 0
for a positive eigenvalue λ satisfies wj > 0 for all j.

Proof: Since w is an eigenvector, there is at least one component which is
positive, say wμ > 0. For all j there is m ∈ N with (Pm)μj > 0. Since
wPm = λmw, we have

∑
i

wi(Pm)ij = λmwj

and
0 < wμ︸︷︷︸

>0

(Pm)μj︸ ︷︷ ︸
>0

≤ ∑
i

wi(Pm)ij = λmwj ⇒ wj > 0.

This proves the assertion. �

2.20 Theorem: Let P ∈ Rk×k be a stochastic matrix. Then the following
statements hold true:

(i) P has the eigenvalue 1.

19



(ii) There is a vector v ≥ 0 (i.e., all entries of v are nonnegative) with
v �= 0 and vP = v.

(iii) Let P be irreducible. Then there is a unique vector π = (π1, . . . , πk)
such that πP = π, ∑k

i=1 πi = 1 and πi ≥ 0.

Proof:

(i) Take u =

⎛
⎜⎝ 1

...
1

⎞
⎟⎠. Then Pu = u. So P has the eigenvalue 1.

(ii) Define f (v) = vP for all v ∈ Rk and

S :=

{
v ∈ Rk : 1 = ‖v‖1 =

k

∑
i=1

vi and v1, . . . , vk ≥ 0

}
.

For v ∈ S

‖ f (v)‖1 = ‖vP‖1 = ∑
j
(vP)j = ∑

j
∑

i
vi pij = ∑

i
vi ∑

j
pij︸ ︷︷ ︸

=1

= 1.

Hence, f defines a map, again denoted by f , which maps S into S.
The set S is compact and convex. Since f is continuous, we can ap-
ply Brouwer’s fixed point theorem and conclude that there is a fixed
point of f , i.e., v = f (v) = vP, v ∈ S.

(iii) Let π be a fixed point of the map f : S �. Let v �= 0 be an eigenvector
for λ = 1. Consider for every t ∈ R the vector π + tv. This is an
eigenvector for λ = 1. By Lemma 2.19 all entries of π are positive.
Choose t0 ∈ R such that all entries are nonnegative, but at least one
component is equal to zero. By Lemma 2.19 this implies π + t0v = 0
and hence v = 1

t0
π. This shows uniqueness of π.

�
The eigenvalue λ = 1 is called the Frobenius-Perron eigenvalue and π the
Frobenius-Perron eigenvector.5

Now let X = ∏∞
1 {1, . . . , k} and fix an irreducible stochastic k × k-matrix P.

Consider the Perron-Frobenius eigenvector π = (π i) (π > 0 and ∑i πi = 1,
πP = π). Define μ by

μ ([a1, . . . , an]t,...,t+n−1) = πa1 pa1a2 pa2a3 · · · pan−1an .

This generates a shift-invariant probability measure on X, again denoted
by μ. This is called a Markov measure and X is called the Markov shift space.

5It can also be shown that the generalized eigenspace for λ = 1 is one-dimensional.
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Suppose
p1j = pij for all i, j.

Then we get back a Bernoulli shift. (pj = p1j, j = 1, . . . , k).

2.5 Isomorphic Transformations

Recall from Linear Algebra: Two matrices A, B ∈ Rn×n are similar if A =
S−1BS for some S ∈ Gl(n, R), or equivalently SA = BS:

Rn A−−−→ Rn

S

⏐⏐ ⏐⏐ S

Rn −−−→
B

Rn

What is the appropriate definition of similarity for measure preserving
transformations?

2.21 Definition:

(i) Let (X1, μ1) and (X2, μ2) be measure spaces. A map Φ : X1 → X2
is said to be almost everywhere bijective, if there are E1 ⊂ X1 and
E2 ⊂ X2 with μ1(E1) = μ2(E2) = 0 such that

Φ|X1\E1
: X1\E1 → X2\E2

is bijective.

(ii) (X1, μ1) and (X2, μ2) are called isomorphic with isomorphism Φ, if Φ
is an almost everywhere bijective map with Φ, Φ−1 measurable and
measure preserving.

2.22 Example: The spaces ∏∞
1 {0, 1} with ( 1

2 , 1
2)-Bernoulli measure and

[0, 1] with Lebesgue measure are isomorphic. See Exercise 2 on Sheet 2.
♦

2.23 Definition: Let T1 on (X1, μ1) and T2 on (X2, μ2) be measure preserv-
ing. They are called isomorphic or conjugate, if there is an isomorphism
Φ : (X1, μ1) → (X2, μ2) such that the following diagram commutes.

(X1, μ1)
T1−−−→ (X1, μ1)

Φ

⏐⏐ ⏐⏐ Φ

(X2, μ2) −−−→
T2

(X2, μ2)

Note: Here we assume that T1(X1\E1) ⊂ X1\E1 and T2(X2\E2) ⊂ X2\E2
for the null sets E1 and E2 outside of which Φ is bijective.
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2.24 Remarks:

(i) Conjugation is an equivalence relation.

(ii) If Φ is only measure preserving, then Φ is called a semi-conjugacy,
T2 is called a factor of T1, and T1 is called an extension of T2.

(iii) Analogous definitions can be given in a topological setting, where
X1, X2 are topological spaces and T1, T2 are continuous. Then it is
required that Φ is a homeomorphism with Φ ◦T1 = T2 ◦Φ (topological
conjugacy).

2.25 Example: The measure spaces X1 := ∏∞
1 {0, 1} with ( 1

2 , 1
2)-Bernoulli

measure μ1 and X2 := [0, 1] with Lebesgue measure dx are isomorphic via

Φ : (x1, x2, x2, . . .) �→
∞

∑
n=1

xn2−n.

Let T1 : X1 � be the shift

T1((x1, x2, x3, . . .)) = (x2, x3, . . .)

and T2 : X2 � the map
T2(x) = 2x (mod 1).

Then Φ ◦ T1 = T2 ◦ Φ, which is proven by

T2

(
∞

∑
n=1

xn2−n

)
= x1 +

∞

∑
n=2

xn2−n+1

︸ ︷︷ ︸
≤1

(mod 1)

=
∞

∑
n=1

xn+12−n = Φ(x2, x3, . . .) = Φ(T1(x1, x2, . . .)).

♦

2.26 Example: Let X = [0, 1] and T(x) = 4x(1 − x) (logistic map) and

Λ(x) =
{

2x for x ∈ [0, 1
2 ],

2 − 2x for x ∈ (1
2 , 1].

(tent map)

Λ preserves Lebesgue measure and T preserves dμ = ρ(x)dx with density
ρ(x) = 1

π
√

x(1−x)
. Define

Φ(x) := sin2 (π
2 x
)
= 1

2 (1 − cos(πx)) .

Clearly, Φ is bijective and Φ : (X, dx) → (X, μ) is measure preserving: The
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Figure 7: Graph of Φ from Ex. 2.26.

length (= Lebesgue measure) of Φ−1([0, Φ(a)]) equals the length of [0, a]
which equals a and

μ([0, Φ(a)]) =
∫ sin2( π

2 a)

0
ρ(x)dx

(�)
= a.

Both sides of the equality (�) coincide, since they coincide for a = 0 and
their derivatives coincide: The derivative of the right-hand side obviously
equals 1. For the left-hand side the chain rule gives

d
da

∫ sin2( π
2 a)

0

dx

π
√

x(1 − x)
=

2 sin(π
2 a) cos(π

2 a)π
2

π
√

sin2(π
2 a)(1 − sin2(π

2 a))

=
sin(π

2 a) cos(π
2 a)√

sin2(π
2 a) cos2(π

2 a)
=

sin(π
2 a) cos(π

2 a)
sin(π

2 a) cos(π
2 a)

= 1.

It remains to show that Φ conjugates T and Λ. For T ◦ Φ we obtain

T(Φ(x)) = 4 sin2(π
2 x)(1 − sin2(π

2 x)) = 4 sin2(π
2 x) cos2(π

2 x) = sin2(πx).

In the last equality we used the trigonometric identity 2 sin(·) cos(·) =
sin(2·). For Φ ◦ Λ we get

Φ(Λ(x)) = sin2(π
2 Λ(x)) = sin2(π

2 2x) = sin2(πx)
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for x ∈ [0, 1
2 ] and

Φ(Λ(x)) = sin2(π
2 Λ(x)) = sin2(π

2 (2 − 2x))

= sin2(π(1 − x)) = sin2(π − πx) = sin2(πx)

for x ∈ ( 1
2 , 1]. ♦

2.27 Example: Let X = [0, 1] and consider S(x) = 2x (mod 1) and T(x) =
4x(1− x). (S preserves Lebesgue measure and T preserves dμ = dx

π
√

x(1−x)
.)

Define Ψ : (X, dx) → (X, dμ) by

Ψ(x) = sin2(πx).

For almost all x Ψ is two-to-one, hence not an isomorphism. So it can
only be a semi-conjugacy. Ψ is surjective and it is measure-preserving: The
length of Ψ−1([0, Ψ(a)]) is 2a. We have to show that it equals

∫ sin2(πa)

0
ρ(x)dx = μ([0, ψ(a)]).

This is proven with the same arguments as in the preceding example. It is
left to show that the conjugation property holds:

T(Ψ(x)) = 4 sin2(πx)(1 − sin2(πx)) = sin2(2πx) = Ψ(S(x)),

since for x ∈ [0, 1
2 ] we have Ψ(S(x)) = sin2(2πx) and for x ∈ ( 1

2 , 1]

Ψ(S(x)) = sin2(π(2x − 1)) = sin2(2πx − π)

= (− sin(2πx))2 = sin2(2πx).

♦

2.28 Example: Consider again S(x) = 2x (mod 1) on [0, 1), identified with
the unit circle, with Lebesgue measure and T(x) = 1

2(x − 1
x ) on R with

invariant measure dx
π(1+x2)

. It can be shown that they are conjugate via

Φ(x) = − cot(πx).

♦

2.6 Coding Maps

Idea: Use Shift Transformations to describe transformations.
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2.29 Definition: Let T be measure preserving on a probability space
(X, μ). A partition P = {E0, E1, . . . , Ek} is called generating if the subsets
of the form

Ei1 ∩ T−1(Ei2) ∩ · · · ∩ T−(n−1)(Ein), ij ∈ {0, 1, . . . , k},

generate the σ-algebra of X.

Example: Consider a partition {E0, E1} of [0, 1] into subintervals and look
at

E0, E1, E0 ∩ T−1(E0), E0 ∩ T−1(E1), E1 ∩ T−1(E0), E1 ∩ T−1(E1), . . .

Then the smallest σ-algebra containing all these sets should be the Borel-σ-
algebra. In the following: P = {E0, E1}.

Let Y = ∏∞
1 {0, 1} and let Σ : Y � be the shift

Σ : (i1, i2, i3, . . .) �→ (i2, i3, i4, . . .).

For x ∈ X define the coding map Φ : X → Y by

Φ(x) = (i1, i2, i3, . . .),

where Tn−1(x) ∈ Ein for all n ≥ 1. Thus, in is uniquely determined by x and
T. The coding map is almost everywhere injective, if (what we assume)

∞⋂
n=1

T−(n−1)(Ein)

contains at most one element x with μ-probability one. Next we define a
probability measure on Y: Let [i1, . . . , in] denote a cylinder set in Y, i.e.,

[i1, . . . , in] = {(y1, y2, . . .) ∈ Y | yk = ik, 1 ≤ k ≤ n} .

Then
Φ
(

Ei1 ∩ T−1(Ei2) ∩ · · · ∩ T−(n−1)(Ein)
)
= [i1, . . . , in].

Define ν on Y by

ν([i1, . . . , in]) = μ
(

Ei1 ∩ T−1(Ei2) ∩ · · · ∩ T−(n−1)(Ein)
)

.

Then Φ : X → Y is measure preserving and

Φ ◦ T = Σ ◦ Φ.
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Note that only those cylinder sets get positive measure whose preimage
have positive μ-measure. Hence, Φ is an isomorphism. How can one visu-
alize Φ and the measure ν?

(X, μ)
T ��

Φ
��

(X, μ)

Φ
��

(Y, ν)
Σ

��

γ

��

(Y, ν)

γ

��

[0, 1]
S

�� [0, 1]

We use that we can get from Y = ∏∞
1 {0, 1} to [0, 1] via binary expansion:

Define γ : Y → [0, 1] by γ([i1, i2, . . .]) = ∑∞
n=1 in2−n and a measure ν0 on

cylinder sets
ν0(γ([i1, . . . , in]) := ν([i1, . . . , in]).

Then, with S(x) = 2x (mod 1) on [0, 1), we have

γ ◦ Σ = S ◦ γ.

We can visualize ν0 (and hence μ) using “many points”.

2.30 Example: X = [0, 1], T(x) = 2x (mod 1). P = {E0, E1} with E0 =
[0, 1

2), E1 = [ 1
2 , 1]. Then Φ(x) = (b1, b2, b3, . . .) for x = ∑∞

n=1 bn2−n, bn ∈
{0, 1}. Then γ ◦ φ = id, and ν0 is Lebesgue measure (i.e., the invariant
measure for T). The proof is left as an exercise. ♦

2.31 Example: Take X = [0, 1]× [0, 1] and (Baker)

T(x) =
{

(2x, 1
2 y) for x ∈ [0, 1

2),
(2x − 1, 1

2 y + 1
2 ) for x ∈ [ 1

2 , 1].

Take P = {E0, E1} with E0 = [0, 1
2)× [0, 1] and E1 = [ 1

2 , 1]× [0, 1].

FIGURE

Let Y = ∏∞
−∞{0, 1} be the two-sided ( 1

2 , 1
2)-Bernoulli shift space and Σ the

shift transformation. Define Φ : X → Y by

Φ(x) = (. . . , i−1, i0, i1, i2, . . .),

where Tn(x) ∈ Ein . Equivalently, for (a, b) ∈ [0, 1]× [0, 1] with

a =
∞

∑
j=0

aj2−j, b =
∞

∑
j=0

bj2−j,

Φ(x) = Φ((a, b)) = (. . . , b−2, b−1, a0, a1, a2, . . .).

Thus, Φ is an isomorphism. ♦
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2.32 Example: (Coding map for the logistic map)
Let T(x) = 4x(1 − x) on X = [0, 1]. Let E0 = [0, 1

2), E1 = [ 1
2 , 1]. Binary

sequence (bn): Tn−1(x) ∈ Ebn (⇔ x ∈ T−(n−1)(Ebn)). ♦

3 Birkhoff’s Ergodic Theorem

Aim: Let μ be an invariant measure for T : X � and f : X → R. We want
to compare

∫
f dμ and the average value of f along a trajectory f (Tn(x)).

Birkhoff (1931): Ergodicity necessary.

3.1 Ergodicity

The following definition is fundamental for the whole theory.

3.1 Definition: Let (X,A, μ) be a probability space and T : X � a μ-
preserving map, i.e., μ(T−1(E)) = μ(E) for all E ∈ A. Then T is called
ergodic if for E ∈ A one has

μ
(
(T−1(E)\E) ∪ (E\T−1(E))

)
= 0 ⇒ μ(E) = 0 or μ(E) = 1.

For a better understanding of this property it is useful to introduce the fol-
lowing convention: Two sets are said to be equal if they only differ by null
sets, formally:

A = B if μ
(
A\B ∪ B\A︸ ︷︷ ︸

=:AΔB

)
= 0.

In these terms: T is ergodic if

T−1(E) = E ⇒ E = ∅ or E = X.

We also call the measure μ ergodic (with respect to T).

3.2 Definition: If, for a transformation T on (X,A, μ), there are disjoint
measurable Ej with μ(Ej) > 0,

X =
⋃

j

Ej, T(Ej) ⊂ Ej,

such that T|Ej : Ej → Ej is ergodic with respect to the conditional measure
μEj , then such Ej is called an ergodic component of T.

The following observation will be useful for a measure μ. Let E ∈ A with
μ(E) > 0. Then

μE(A) :=
μ(A ∩ E)

μ(E)
, A ∈ A,
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defines a measure, called the conditional measure. If μ is a probability
measure, then also μE is a probability measure. Furthermore, we also may
consider μE as a measure on E.

3.3 Theorem: Let T be a transformation on (X, μ). Then the following are
equivalent:

(i) T is ergodic.

(ii) If μ(A) > 0, then
⋃∞

n=1 T−n(A) = X.

(iii) If μ(A) > 0 and μ(B) > 0, then μ(T−n(A) ∩ B) > 0 for some n ≥ 1.

(iv) If a measurable function f : X → C satisfies f (T(x)) = f (x) for
almost every x ∈ X, then f is constant almost everywhere.

Proof: “(i) ⇒ (ii)”: Put E :=
⋃∞

n=1 T−n(A) for μ(A) > 0. Then T−1(E) =⋃∞
n=2 T−n(A) ⊂ E and

μ(EΔT−1(E)) = μ(E\T−1(E)) = μ(E)− μ(T−1(E)) = 0

by invariance of μ. Hence, E = T−1(E). Since T is ergodic, E = ∅ or
E = X. Since E ⊃ T−1(A) and μ(E) ≥ μ(T−1(A)) = μ(A) > 0, we
conclude μ(E) = 1, i.e., E = X.

“(ii) ⇒ (iii)”: Let μ(A), μ(B) > 0. Since
⋃∞

n=1 T−n(A) = X, B =⋃∞
n=1(T

−n(A) ∩ B), there is n ≥ 1 with μ(T−n(A) ∩ B) > 0.

“(iii) ⇒ (i)”: Suppose T−1(B) = B and μ(B) > 0. Let A := X\B. Then
T−n(A) = X\T−n(B) = X\B. Hence, μ(T−n(A) ∩ B) = 0 for all n ≥ 1.
Thus, by (iii), μ(A) = 0 and hence μ(B) = 1.

“(i) ⇒ (iv)”: Let f : X → C be measurable with f (T(x)) = f (x) for almost
all x. By considering real and imaginary parts separately, we may assume
that f is real-valued. Put, for n ≥ 1, k ∈ Z,

En,k :=
{

x ∈ X : 2−kk ≤ f (x) < 2−n(k + 1)
}

.

Then {En,k | k ∈ Z} is a partition of X for every n. Note that

T−1(En,k) =
{

x | 2−nk ≤ f (T(x)) < 2−n(k + 1)
}

ass.
=

{
x | 2−nk ≤ f (x) < 2−n(k + 1)

}
= En,k.

Hence, by ergodicity, En,k has measure 0 or 1. More precisely, for each n
there is a unique kn ∈ Z such that

μ(En,kn) = 1 and μ(En,k) = 0 for k �= kn.

Let X0 :=
⋂∞

n=1 En,kn . Then μ(X0) = 1 and f is constant on X. (Since all
values are contained in an interval of length 2−n, n ∈ N).
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“(iv) ⇒ (i)”: Suppose T−1(E) = E. Then, with f (x) = 1E(x)

f (x) = 1E(x) = 1E(T(x)) =
{

1 if T(x) ∈ E ⇔ x ∈ T−1(E) = E,
0 if T(x) /∈ E ⇔ x /∈ T−1(E) = E.

By (iv) 1E(x) is constant. Hence, either E = X or E = ∅. �

3.4 Example: Let X = [0, 1], T(x) = x + θ (mod 1), where θ ∈ [0, 1]. The
Lebesgue measure is invariant.

Assertion: The Lebesgue measure is ergodic for T iff θ /∈ Q.

Proof: Let θ ∈ Q, i.e., θ = p
q , p, q ∈ N (w.l.o.g.). Define

f (x) := e2πiqx, x ∈ [0, 1].

f is obviously not constant.

f (T(x)) = e2πiq(x+θ) = e2πiqx e2πip︸︷︷︸
=1

= e2πiqx = f (x).

Hence, by Theorem 3.3 (iv) T is not ergodic.

Now let θ ∈ R\Q. We show: For all f ∈ L2(X, C) with f (T(x)) = f (x) for
all x ∈ X it follows that f is constant, which implies ergodicity. L2(X, C)
has an inner product, defined by

〈 f , g〉 =
∫ 1

0
f (x)g(x)dx

for f , g ∈ L2(X, C). Fact: This is a Hilbert space. The norm is ‖ f‖2 =√〈 f , f 〉. The following set of elements in L2(X, C) is orthonormal:

fn(x) := e2πinx, x ∈ [0, 1], n ∈ Z.

We compute

〈 fn, fm〉 =
∫ 1

0
e2πinxe2πimxdx =

∫ 1

0
e2πi(n−m)xdx =

{
1 for n = m,
0 for n �= m.

The latter is true since for n �= m∫ 1

0
e2πi(n−m)xdx =

1
2πi(n − m)

[
e2πi(n−m)x

]1

0
=

1
2πi(n − m)

(1 − 1) = 0.

L2(X, C) is infinite-dimensional, but every element f ∈ L2(X, C) can
uniquely be written as

f = ∑
n∈Z

cn fn (Fourier Series)
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with cn = 〈 f , fn〉. { fn}n∈Z is a complete ON-system (see also Bachman and
Narici [4, pp. 155–157]). Let f ∈ L2(X, C). Then

f (x) = ∑
n∈Z

cne2πinx, x ∈ [0, 1] = X.

We compute

f (x) = f (T(x)) = ∑
n∈Z

cne2πin(x+θ) = ∑
n∈Z

cne2πinθe2πinx.

Since the cn are unique, it follows that

cn = cne2πinθ for all n ∈ Z.

If cn �= 0, then e2πinθ = 1, which implies n = 0, since θ is irrational. Hence,
f (x) = c0, a constant. ♦

A generalization:

3.5 Theorem: Let F be a compact Abelian group with Haar measure μ
(μ(H) = μ(gH) for H ⊂ G, g ∈ G). For each g ∈ G define

Tg : G �, Tg(x) = gx, x ∈ G.

Then Tg is ergodic with respect to μ iff

{gn | n ∈ Z}
is dense in G.

Observe: G = R/Z becomes a topological group under addition modulo
one. It is also compact and Abelian. The Haar measure is the Lebesgue
measure. A character of G is a homomorphism χ : G → C\{0} such that
|χ(g)| = 1 for all g ∈ G (χ(g1g2) = χ(g1)χ(g2) for all g1, g2 ∈ G). The
characters form a complete ON-system in L2(G, C, μ). In other words: For
each f ∈ L2(G, C, μ) there are unique numbers f̂ (χ), χ a character, such
that

f (x) = ∑
χ

f̂ (χ)χ(x),

where the sum runs over all characters.

3.6 Example: Let X = [0, 1) and T(x) = 2x (mod 1). The Lebesgue mea-
sure is an invariant ergodic measure.

Proof: Let f ∈ L2(X, C) be invariant, i.e.,

f (x) = f (T(x)) for almost all x ∈ [0, 1).

30



Then f (x) = ∑n∈Z cne2πinx, x ∈ [0, 1), and the coefficients are unique. Com-
pute

∑
n∈Z

cne2πinx = f (x) = f (T(x)) = ∑
n∈Z

cne2πi(2n)x.

Hence, cn = 0, if n is odd. Computation of f (T2(x)) = ∑n∈Z cne2πi(4n)x

shows that all coefficients cn with n not a multiple of 4 are equal to zero.
Going on this way we find that all cn are equal to zero except possibly c0.
Hence, f (x) is constant. ♦

3.7 Theorem: Consider Tn = Rn/Zn, the n-dimensional torus. Define a
multiplication

(y1, . . . , yn) · (z1, . . . , zn) := (y1 + z1 (mod 1), . . . , yn + zn (mod 1)).

This makes Tn into a compact Abelian group. Let Φ : Tn � be a surjective
homomorphism given by

Φ(x) = Ax, A ∈ Zn×n.

Then Φ is ergodic with respect to Lebesgue measure iff no eigenvalue of A
is a root of unity.

3.8 Example: Let A =

(
2 1
1 1

)
. The eigenvalues are given by

0 = (2 − λ)(1 − λ)− 1 = λ2 − 3λ + 1 ⇔ λ1/2 = 1
2

(
3 ±

√
5
)

.

Hence, the eigenvalues are not roots of unity (λn
1 , λn

2 �= 1 for all n ∈ N).
♦

3.2 Birkhoff’s Ergodic Theorem

3.9 Theorem: Let (X, μ) be a probability space. If T : X � preserves the
measure μ and f : X → R is integrable, then

lim
n→∞

1
n

n−1

∑
k=0

f (Tk(x)) = f ∗(x)

for all x ∈ X and for some f ∗ ∈ L1(X, R, μ) with

f ∗(T(x)) = f ∗(x) for almost all x ∈ X.

If T is ergodic, then f ∗ is constant and

lim
n→∞

1
n

n−1

∑
k=0

f (Tk(x)) =
∫

X
f dμ

for almost all x ∈ X.
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Discussion: Let f = 1E, E ⊂ X measurable. Then

lim
n→∞

1
n

n−1

∑
k=0

1E(Tk(x))

counts how often Tk(x) visits E in average. If T is ergodic, then this limit
equals μ(E) (“time average = average over space”).
Conversely: If E is a measurable invariant set, then 1E is an invariant func-
tion: 1E(x) = 1E(T(x)) for almost all x ∈ X.

For the proof of Theorem 3.9 we need the following lemma.

3.10 Lemma (Maximal Ergodic Theorem): Let T : X � be measure pre-
serving and consider f : X → R integrable. Define f0 :≡ 0, fn :=
f + f ◦ T + · · · + f ◦ Tn−1, n ≥ 1, and FN(x) := max0≤n≤N fn(x), x ∈ X.
Then ∫

{x: FN(x)>0}
f dμ > 0 for all N ∈ N.

Proof: Observe that FN ∈ L1(X, μ) since f , f ◦ T, . . . are integrable. For
0 ≤ n ≤ N, FN ≥ fn and hence,

FN ◦ T ≥ fn ◦ T

Thus,

FN ◦ T + f ≥ f + fn ◦ T = fn+1 for n = 0, 1, . . . , N − 1.

This shows

FN(T(x)) + f (x) ≥ max
1≤n≤N

fn(x) for all x ∈ X.

If FN(x) > 0, then the right hand side equals max0≤n≤N fn(x) = FN(x). We
find

f (x) ≥ FN(x)− FN(T(x)) on {x | FN(x) > 0} =: AN .

We compute ∫
AN

f dμ ≥
∫

AN

FNdμ −
∫

AN

FN ◦ Tdμ = 0.

The latter is true since T preserves μ. �

3.11 Corollary: Let T : X � be measure preserving. If g : X → R is
integrable and

Bα :=

{
x ∈ X : sup

n≥1

1
n

n−1

∑
k=0

g(Tk(x)) > α

}
, α ∈ R,
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then ∫
Bα

gdμ ≥ αμ(Bα).

If T−1(A) = A for some A ⊂ X (measurable), then∫
Bα∩A

gdμ ≥ αμ(Bα ∩ A).

Proof: The second assertion is immediate from the first one, if we apply it
to A instead of X. Apply the Maximal Ergodic Theorem to

f := g − α.

Then

Bα :=
∞⋃

N=0

{x ∈ X | FN(x) > 0}

and ∫
{x: Fn(x)>0}

f dμ ≥ 0 for all N ⇒
∫

Bα

f dμ ≥ 0.

Hence,
∫

Bα
gdμ − ∫

Bα
αdμ ≥ 0, i.e.,∫

Bα

gdμ ≥ αμ(Bα).

�
Proof of Birkhoff’s Ergodic Theorem:
Define

f ∗(x) := lim sup
n→∞

1
n

n−1

∑
k=0

f (Tk(x)),

f∗(x) := lim inf
n→∞

1
n

n−1

∑
k=0

f (Tk(x)).

This implies

f ∗(T(x)) = lim sup
n→∞

1
n

n−1

∑
k=0

f (Tk+1(x))

= lim sup
n→∞

n + 1
n + 1

1
n
[ f (T(x)) + · · ·+ f (Tn(x))]

= lim sup
n→∞

n + 1
n + 1

1
n
[x + f (T(x)) + · · ·+ f (Tn(x))]− x

n︸︷︷︸
→0

= lim sup
n→∞

n + 1
n︸ ︷︷ ︸
→1

1
n + 1

n

∑
k=0

f (Tk(x)) = f ∗(x).
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We still have to show that f ∗(x) = f∗(x) and they are integrable. Put

Eα,β := {x ∈ X | f∗(x) < β and α < f ∗(x)} , α, β ∈ Q.

We want to show that
{x | f∗(x) < f ∗(x)}

has measure 0. Then for α, β ∈ Q

{x | f∗(x) < f ∗(x)} =
⋃

β<α

Eα,β (countable union).

We find

T−1(Eα,β) = {x | f∗(T(x)) < β and α < f ∗(T(x))}
= {x | f∗(x) < β and α < f ∗(x)} = Eα,β.

Put

Bα :=

{
x : sup

n≥1

1
n

n−1

∑
k=0

f (Tk(x)) > α

}
.

Then Eα,β ⊂ Bα. By Corollary 3.11∫
Eα,β

f dμ =
∫

Bα∩Eα,β

f dμ ≥ αμ(Bα ∩ Eα,β) = αμ(Eα,β).

Note that (− f )∗ = − f∗, (− f )∗ = − f ∗ and

Eα,β = {x | (− f )∗(x) > −β and − α > (− f )∗(x)} .

Replace f , α, β by − f ,−β,−α. Then∫
Eα,β

(− f )dμ ≥ −βμ(Eα,β) ⇒
∫

Eα,β

f dμ ≤ βμ(Eα,β).

If α > 0, then μ(Eα,β) = 0.

{x | f∗(x) < f ∗(x)} =
⋃

β<α

Eα,β ⇒ μ ({x | f∗(x) < f ∗(x)}) = 0.

Hence,

f ∗(x) = lim
n→∞

1
n

n−1

∑
k=0

f (Tk(x)).

Next we show: f ∗ is integrable: Let

gn(x) :=

∣∣∣∣∣ 1
n

n−1

∑
k=0

f (Tk(x))

∣∣∣∣∣
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Then (since T leaves μ invariant)

∫
X

gndμ ≤ 1
n

n−1

∑
k=0

∫
X
| f (Tk(x))|dμ︸ ︷︷ ︸
=
∫

X | f |dμ

=
∫

X
| f |dμ < ∞.

Now (by Fatou’s Lemma)∫
X
| f ∗|dμ =

∫
X
| f∗|dμ =

∫
X

lim inf
n→∞

gndμ ≤ lim inf
n→∞

∫
X

gndμ.

Hence, f ∗ is integrable. It remains to show that∫
X

f dμ =
∫

X
f ∗dμ. (2)

Since μ is ergodic and f ∗(T(x)) = f ∗(x), by Theorem 3.3 we get that f ∗ is
constant almost everywhere. This implies∫

X
f ∗dμ = f ∗(x) μ(X)︸ ︷︷ ︸

=1

=
∫

X
f dμ.

For the proof of (2) define for all n ≥ 1 and k ∈ Z the set

Dn,k :=
{

x ∈ X | k
n ≤ f ∗(x) < k+1

n

}
.

For fixed n, X is the disjoint union of the set Dn,k, k ∈ Z. Dn,k is invariant,
since f ∗(x) = f ∗(T(x)) implies

T−1(Dn,k) = {x ∈ X | T(x) ∈ Dn,k} = Dn,k.

For ε > 0 small enough

Dn,k ⊂ B k
n−ε =

{
x ∈ X : sup

n≥1

1
n

k−1

∑
i=0

f (Ti(x)) >
k
n
− ε

}
.

By Corollary 3.11 we obtain∫
Dn,k

f dμ ≥
(

k
n − ε

)
μ(Dn,k) for all ε > 0.

Thus, ∫
Dn,k

f dμ ≥ k
n μ(Dn,k).

Together with the definition of Dn,k this yields∫
Dn,k

f ∗dμ ≤ k+1
n μ(Dn,k) =

1
n μ(Dn,k) +

∫
Dn,k

f dμ.
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Summation over k yields∫
X

f ∗dμ ≤ 1
n +

∫
X

f dμ for all n ∈ N.

For n tending to ∞ we get the inequality∫
X

f ∗dμ ≤
∫

X
f dμ.

The same procedure for − f gives∫
X
(− f )∗dμ ≤

∫
X
(− f )dμ ⇒

∫
X

f ∗dμ ≥
∫

X
f dμ.

This finishes the proof. �

3.12 Remarks:

• We have shown: ∫
X

f dμ =
∫

X
f ∗dμ for all μ.

Hence, by Lebesgue’s Theorem on Dominated Convergence we obtain
for f bounded:∥∥∥∥∥ 1

n

n−1

∑
k=0

f (Tk(x))− f ∗(x)

∥∥∥∥∥
1

=
∫

X

∣∣∣∣∣ 1
n

n−1

∑
k=0

f (Tk(x))− f ∗(x)

∣∣∣∣∣ dμ
n→∞−−−→ 0,

i.e., convergence in L1(X, μ).

• A stochastic interpretation of Birkhoff’s Ergodic Theorem: Let (Ω, P)
be a probability space. A, B ⊂ Ω are called independent if P(A ∩ B) =
P(A)P(B). Ai ⊂ Ω, i ∈ N, are called independent if for all 1 ≤ i1 <
i2 < · · · < ik

P(Ai1 ∩ · · · ∩ Aik) = P(Ai1)P(Ai2) · · · P(Aik).

A sequence of integrable functions X1, X2, . . . : Ω → R is independent,
if {

X−1
i (Bi)

}∞

i=1
, Bi ⊂ R,

are independent for all {Bi} in R.
The distribution of an integrable function X : Ω → R is

PX(A) := P(X−1(A)), A ⊂ R.

The Strong Law of Large Numbers says: Let X1, X2, . . . be independent
integrable functions from Ω to R with identical distribution PX. Let
the mean be

∫
R

xdPX(x). Then

1
n
[X1(ω) + · · ·+ Xn(ω)] →

∫
R

xdPX(x)

for P-almost all ω ∈ Ω.
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3.13 Theorem: Let T : X � be μ-preserving for a probability measure μ.
Then μ is ergodic if and only if for all measurable A, B ⊂ X

lim
n→∞

1
n

n−1

∑
i=0

μ(T−i(A) ∩ B) = μ(A)μ(B),

i.e., convergence in average.

Proof: “⇒”: Take f := 1A in Birkhoff’s Theorem. Then

lim
n→∞

1
n

n−1

∑
i=0

1A(Ti(x)) =
∫

X
1Adμ = μ(A).

Thus,

lim
n→∞

1
n

n−1

∑
i=0

1A(Ti(x))1B(x) = μ(A)1B(x)

for almost all x ∈ X. By Lebesgue’s Theorem on Dominated Convergence
(LDC) we get

μ(A)μ(B) =
∫

X
μ(A)1B(x)dμ

LDC
= lim

n→∞

1
n

∫
X
1A(Ti(x))1B(x)︸ ︷︷ ︸

=1T−i(A)∩B(x)

dμ

= lim
n→∞

1
n

n−1

∑
k=0

μ(T−i ∩ B).

“⇐”: Suppose that T−1(E) = E. Taking A = B = E we get

μ(E) = lim
n→∞

1
n

n−1

∑
i=0

μ(T−i(E) ∩ E) = μ(E)2.

Hence, μ(E) = 0 or μ(E) = 1. �
The following theorem is stated without proof.

3.14 Theorem (The Mean Ergodic Theorem, von Neumann): Let (X, μ)
be a measure space with X =

⋃∞
i=1 Xi with μ(Xi) < ∞ (σ-finite). Let T :

X � be measure-preserving for f ∈ L2(X, μ). Then there is a T-invariant
function f̃ ∈ L2(X, μ) with

lim
n→∞

∥∥∥∥∥ 1
n

n

∑
i=1

f ◦ Ti−1 − f̃

∥∥∥∥∥
2

= 0.
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3.15 Theorem (Borel): Suppose T is continuous on a compact metric space
X, and let {Tn}n∈N be uniformly equicontinuous, i.e.,

∀ε > 0 : ∃δ > 0 : ∀n ∈ N : ∀x, y ∈ X : d(x, y) < δ ⇒ d(Tn(x), Tn(y)) < ε.

If μ is ergodic for T and μ(U) > 0 for all nonempty open sets U ⊂ X, then
for all continuous f : X → R and every x ∈ X

lim
n→∞

1
n

n−1

∑
k=0

f (Tk(x)) =
∫

X
f dμ.

Proof: By Birkhoff’s Theorem the assertion is true for all x outside of N
with μ(N) = 0. Since μ is positive on nonempty open sets, the interior of N
is empty, hence the assertion holds on a dense set X0 ⊂ X. Let x ∈ X and
ε > 0. Since {Tn}n∈N is uniformly equicontinuous by assumption and f is
uniformly continuous, since X is compact, there is δ > 0 such that

d(x, y) < δ ⇒ sup
k≥0

| f (Tk(x))− f (Tk(y))| < ε.

Choose a point y ∈ X0 such that d(x, y) < δ. Then for all n ≥ 0∣∣∣∣∣ 1
n

n−1

∑
k=0

f (Tk(x))−
∫

X
f dμ

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
n

n−1

∑
k=0

f (Tk(x))− f (Tk(y))

∣∣∣∣∣︸ ︷︷ ︸
<ε

+

∣∣∣∣∣ 1
n

n−1

∑
k=0

f (Tk(y))−
∫

X
f dμ

∣∣∣∣∣ n→∞−−−→ 0.

The second summand tends to zero, since y ∈ X0. Since ε is arbitrary, the
assertion holds. �

3.16 Theorem (Kronecker-Weyl): For an irrational number θ ∈ (0, 1) we
have

lim
n→∞

1
n

card {k ∈ [0, n] ∩ Z | {kθ} ∈ I} = length of I,

for each interval I ⊂ (0, 1), where {·} denotes the fractional part of a real
number.

Proof: The map T(x) = x + θ (mod 1), T : [0, 1) �, is ergodic with respect
to Lebesgue measure (see Exercise 3.4). We identify [0, 1) with the (com-
pact) unit circle. The family (Tn)n∈N of iterates of T is uniformly equicon-
tinuous, since

|Tn(x)− Tn(y)| = |(x + nθ)− (y + nθ)| = |x − y|

38



for all x, y ∈ [0, 1) and n ∈ N. Moreover, the Lebesgue measure has the
property that all nonempty open sets have positive measure. Hence, Theo-
rem 3.15 implies that

lim
n→∞

1
n

n−1

∑
k=0

1I(Tk(x)) = λ(I)

for all x ∈ [0, 1) and all intervals I ⊂ [0, 1). For x = 0 we have

n−1

∑
k=0

1I(Ti(0)) =
n−1

∑
k=0

1I(kθ (mod 1))

= card {k ∈ {0, 1, . . . , n − 1} | {kθ} ∈ I} .

This implies the assertion. �
Question: When are Markov shifts ergodic?

Let P be a N × N-stochastic matrix, i.e., P = (pij), pij ≥ 0, ∑j pij = 1 for
all j (the row sums are 1). pij is interpreted as the probability to go from i
to j. Then X = ∏∞

i=1{1, . . . , N} with the shift θ : X �, θ(x1, x2, x3, . . .) =
(x2, x3, . . .). An invariant measure μ is defined by its values on cylinder
sets, i.e., by μ([a1, a2, . . . , an])t,t+1,...,t+n−1. By Theorem 2.20 (ii) there is a
vector π = (π1, . . . , πN) with π ≥ 0, ∑N

i=1 πi = 1, such that πP = π. π is
unique, if P is irreducible, i.e., for all i, j there is m ∈ N with

(Pm)ij =: pm
ij > 0.

The measure μ of cylinder sets is then defined by

μ([a1, a2, . . . , aN ])t,t+1,...,t+n−1 = πa1 pa1a2 pa2a3 · . . . · pan−1an .

3.17 Theorem: A Markov shift is ergodic iff P is irreducible.

Proof: We only prove the backward direction “⇐”: First recall that pk
ij =

(Pk)ij is the probability of {in = j | i0 = i}. Define

Ei := {x ∈ X | x0 = i} , i = 1, . . . , N.

Birkhoff’s Theorem implies that 1
n ∑n−1

i=0 1Ei(θ
k(x)) exists for almost all x ∈

X and the limit is integrable. Hence, using dominated convergence, there
exist

qij :=
1
πi

∫
X

[
lim
n→∞

1Ej(θ
k(x)) · 1Ei(x)

]
dμ

=
1
πi

lim
n→∞

1
n

n−1

∑
k=0

μ
(

θ−k(Ej) ∩ Ei

)

=
1
πi

lim
n→∞

1
n

n−1

∑
k=0

πi pk
ij = lim

n→∞

1
n

n−1

∑
k=0

pk
ij.
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The matrix Q = (qij) is stochastic, i.e., qij ≥ 0,

∑
j

qij = ∑
j

lim
n→∞

1
n

n−1

∑
k=0

pk
ij = lim

n→∞

1
n

n−1

∑
k=0

∑
j

pk
ij︸ ︷︷ ︸

=1

= 1,

since P is stochastic. Furthermore QP = PQ = Q, since Q =
limn→∞

1
n ∑n−1

k=0 Pk, and Q2 = Q. The latter follows from

Q
1
n

n−1

∑
k=0

Pk =
1
n

n−1

∑
k=0

QPk︸︷︷︸
=Q

= Q

by letting n tend to infinity.

Claim: If P is irreducible, then all entries qij of Q are positive and all rows
of Q are identical and each row of Q equals π.

Proof: Q = QP implies that for fixed i and j qij = ∑k qik pn
kj ≥ qik pn

kj for all k
and n. Define

Fi :=
{

j | qij > 0
}

.

Then
k ∈ Fi and pn

kj > 0 ⇒ j ∈ Fi (3)

and Fi �= ∅, since some qik is positive. By irreducibility there is an n with
pn

kj > 0. Again, by irreducibility of P, (3) implies that Fi = {1, . . . , N}. All
rows of Q are identical: If not, there are j0, k0 such that qj0k0 < maxi qik0 =: q.
Since Q2 = Q we have for all i:

qik0 = ∑
j

qij qjk0︸︷︷︸
≤q

< q ∑
j

qij︸ ︷︷ ︸
=1

= q.

This is impossible. Next we show that for all i and j qij = πj. Compute

(πQ)j = ∑
i

πiqij = lim
n→∞

1
n

n−1

∑
k=0

∑
j

πi pk
ij = lim

n→∞

1
n

n−1

∑
k=0

(πPk)j = πj.

The latter equality holds true since πP = π, (πQ) j = ∑N
i=1 πiqij, and qij is

independent of i. Hence,

(πQ)j =

(
N

∑
i=1

πi

)
︸ ︷︷ ︸

=1

qij = qij,

which implies qij = πj for all i and j.
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By Theorem 3.13 ergodicity of the Markov shift follows if

1
n

n−1

∑
k=0

μ(θ−k(E) ∩ F) n→∞−−−→ μ(E)μ(F)

for all measurable sets E and F. It suffices to prove this property for cylin-
der sets E and F: Let

E = {x | (xr, . . . , xr+l) = (i0, i1, . . . , il)} ,

F = {x | (xs, . . . , xs+m) = (j0, j1, . . . , jm)} ,

for given symbols i0, i1, . . . , ir, j0, j1, . . . , jm ∈ {1, . . . , N}. For k large enough
we have

({r, r + 1, . . . , r + l}+ k) ∩ {s, s + 1, . . . , s + m} = ∅.

Then

μ
(

θ−k(E) ∩ F
)
= πj0 pj0 j1 · . . . · pjm−1 pjm

(
pk−m

jm
pi0i1 · . . . · pil−1il

)
and

1
n

n−1

∑
k=0

μ
(

θ−k(E) ∩ F
)
= πj0 pj0 j1 · . . . · pjm−1 jm pi0i1 · . . . · pil−1il

(
1
n

n−1

∑
k=0

pk−m
jmi0

)
︸ ︷︷ ︸

→qjmi0=πi0

The right hand side is

μ(E)μ(F) = πi0 pi0 i1 · . . . · pil−1il πj0 pj0 j1 · . . . · pjm−1 jm .

This finishes the proof. �

3.3 Absolutely Continuous and Singular Invariant Measures

3.18 Theorem: Let (X, μ) be a probability space and let T : X � be a μ-
preserving ergodic transformation. Suppose that ρ ∈ L1(X, μ) satisfies
ρ(x) ≥ 0 for μ-almost all x ∈ X and

∫
X ρdμ = 1. If T is also ergodic

with respect to the measure dν = ρdμ, then ρ(x) = 1 for almost all x ∈ X.

Proof: Let E ⊂ X be measurable and let

X1 =

{
x ∈ X : lim

n→∞

1
n

n−1

∑
k=0

1E(Tk(x)) = μ(E)

}
,

X2 =

{
x ∈ X : lim

n→∞

1
n

n−1

∑
k=0

1E(Tk(x)) = ν(E)

}
.
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Then by Birkhoff’s Ergodic Theorem

μ(X1) = 1 and ν(X2) = 1.

By definition

1 = ν(X2) =
∫

X2

ρdμ.

Hence, μ(X2) > 0. Since μ(X1 ∩ X2) = μ(X2) > 0 it follows that X1 ∩ X2 �=
∅. Choose x ∈ X1 ∩ X2. Then

μ(E) = lim
n→∞

n−1

∑
k=0

1E(Tk(x)) = ν(E) =
∫

E
ρdμ.

This holds for all E, hence ρ(x) = 1 μ-almost everywhere. �

3.19 Example: (Solenoid)
Let S1 = {φ | 0 ≤ φ < 1} be the unit interval identified with the unit circle,
and let

D = {(u, v) ∈ R2 | u2 + v2 ≤ 1}
be the unit disk. Observe that S1 with addition modulo 1 is a group. Con-
sider

X := S1 × D

identified with the solid torus in R3. For 0 < a < 1
2 define the solenoid map

T : X � by

T(φ, u, v) :=
(
2φ, au + 1

2 cos(2πφ), av + 1
2 sin(2πφ)

)
.

The image of T is contained in X, since

(
au + 1

2 cos(2πφ)
)2

+
(
av + 1

2 sin(2πφ)
)2

= a2(u2 + v2︸ ︷︷ ︸
≤1

)

+ a(u cos(2πφ) + v sin(2πφ)︸ ︷︷ ︸
≤1

) + 1
4

≤ a2 + a +
1
4
< 1.

In fact T(x) ⊂ int(X). T is injective: Suppose T(φ1, u1, v1) = T(φ2, u2, v2).
Hence, 2φ1 = 2φ2 (mod 1). If φ1 = φ2, then au1 = au2 and av1 = av2, hence
u1 = u2 and v1 = v2. Else 2φ1 = 2φ2 ± 1. Hence, φ1 − φ2 = ± 1

2 .

au1 +
1
2 cos(2πφ1) = au2 +

1
2 cos(2πφ2)

= au2 +
1
2 cos(2π(φ1 ± 1

2)) = au2 − 1
2 cos(2πφ1).
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Analogously, av1 +
1
2 sin(2πφ1) = av2 − 1

2 sin(2πφ1). Thus, a(u1 − u2) =
− cos(2πφ1) and a(v1 − v2) = − sin(2πφ1). Thus,

a2 [(u1 − u2)
2 + (v1 − v2)

2] = 1.

This is impossible, since a2 < 1
4 and (u1 − u2)2 + (v1 − v2)2 ≤ 1. We have

Tn+1(X) ⊂ int Tn(x) ∀n ≥ 0.

The solenoid is S :=
⋂∞

n=0 Tn(X). S is nonempty, since it is the intersection
of a decreasing sequence of compact sets. Then T|S is bijective.

FIGURE

Question: Does there exist an invariant measure on S?

This question is answered by the following Theorem. ♦

3.20 Theorem (Krylov-Bogolyubov): Let T : X � be continuous on a com-
pact metric space X. Then there exists a T-invariant probability measure on
X (i.e., on the Borel-σ-algebra of X).

Proof: The proof is based on the following facts from Functional Analy-
sis:

(i) Let L : C(X, R) → R be a continuous linear operator with L f ≥ 0 if
f ≥ 0. Then there exists a (unique) finite measure on X such that for
every f ∈ C(X, R)

L f =
∫

X
f dμ.

(Riesz Representation Theorem).

(ii) Let pm(X) be the set of all probability measures on X and (μn) a
sequence in pm(X). Then there are μ ∈ pm(X) and a subsequence
(μnk) such that for every f ∈ C(X, R)∫

X
f dμnk

k→∞−−→
∫

X
f dμ.

(Weak compactness of pm(X)).

(iii) If g : X → C is integrable, then for every ε > 0 there is a set N ⊂ X
with μ(N) < ε and a continuous function f : X → C such that g(x) =
f (x) for all x ∈ X\N. (Lusin’s Theorem).

Fix n ∈ N and x ∈ X and define

Ln : C(X, R) → R, Ln f :=
1
n

n−1

∑
k=0

f (Tk(x)), f ∈ C(X, R).
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Ln is linear and continuous with Ln f ≥ 0 for f ≥ 0. By (i) there is a finite
measure μn with

Ln f =
∫

X
f dμn for all f ∈ C(X, R).

Since
μ(X) =

∫
X

dμ = Ln1 = 1,

μn is a probability measure. By (ii) there is a probability measure μ and a
subsequence (μnk) with

Lnk f =
∫

X
f dμnk

k→∞−→
∫

X
f dμ for all f ∈ C(X, R). (4)

It remains to show that μ is T-invariant. Let f ∈ C(X, R). Then for all
k ∈ N∣∣∣∣∣ 1

nk

nk−1

∑
j=0

f (Tj(x))− 1
nk

nk−1

∑
j=0

f (Tj(T(x)))

∣∣∣∣∣ ≤ 1
nk

| f (x)− f (Tnk(x))| ≤ 2‖ f‖∞

nk
.

(5)
This implies that for all ε > 0 and k ∈ N large enough∣∣∣∣∫

X
f dμ −

∫
X

f ◦ Tdμ

∣∣∣∣ ≤
∣∣∣∣∫

X
f dμ −

∫
X

f dμnk

∣∣∣∣
+

∣∣∣∣∫X
f dμnk −

∫
X

f ◦ Tdμnk

∣∣∣∣
+

∣∣∣∣∫
X

f ◦ Tdμnk −
∫

X
f ◦ Tdμ

∣∣∣∣ .

The first and third summand can be made smaller than ε
3 by (4), and the

second summand by (5). This shows that
∫

X f dμ =
∫

X f ◦ Tdμ for all f ∈
C(X, R). Let A ⊂ X be measurable. From (iii) we can conclude that∫

X
1Adμ =

∫
X
1T−1(A)dμ.

holds, which implies
∫

X f dμ =
∫

X f ◦ Tdμ for all integrable f . By Theorem
2.5 this proves that μ is T-invariant. �

4 More on Ergodicity

4.1 Mixing

Recall Theorem 3.13: An invariant measure is ergodic for T : X � iff for all
measurable A, B ⊂ X

lim
n→∞

1
n

n−1

∑
k=0

μ(T−k(A) ∩ B) = μ(A)μ(B).
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4.1 Definition: A measure-preserving transformation T on (X, μ) is called
mixing, if for all measurable sets A, B ⊂ X

lim
n→∞

μ(T−n(A) ∩ B) = μ(A)μ(B).

Clearly, mixing transformations are ergodic. Question: Is mixing stronger
than ergodicity?

We will show that T : [0, 1) �, x �→ x + θ (mod 1), θ irrational, which we
know is ergodic, is not mixing.

Recall: μ is T-invariant iff UT f = f ◦ T is norm-preserving on L2(X, C, μ),
i.e.,

∫
X | f |2dμ =

∫
X | f ◦ T|2dμ for all f ∈ L2(X, C, μ). The inner product on

L2(X, C, μ) is given by

( f , g)L2 =
∫

X
f (x)g(x)dμ(x).

4.2 Theorem: Let (X, μ) be a probability space and T : X � μ-preserving.
Then the following are equivalent:

(i) T is mixing.

(ii) For f ∈ L2(X, C, μ): limn→∞(Un
T f , f ) = ( f , 1)(1, f ).

(iii) For f , g ∈ L2(X, C, μ): limn→∞(Un
T f , g) = ( f , 1)(1, g).

Proof: “(i) ⇒ (ii)”: Write U instead of UT. First let f be a simple function,
i.e., f = ∑k

i=1 ci1Ei , Ei ⊂ X measurable, ci ∈ C. Then

U f =
k

∑
i=1

ci1T−1(Ei)

and

(Un f , f ) =
∫

X
Un f f dμ =

k

∑
i,j=1

cicjμ(T−n(Ei) ∩ Ej)

n→∞−→
k

∑
i,j=1

cicjμ(Ei)μ(Ej) =

(∫
X

f · 1dμ

)(∫
X

1 · f dμ

)
= ( f , 1) · (1, f ).

In order to prove this for general f ∈ L2, we need the Cauchy-Schwarz
Inequality:

|(g, h)| ≤ ‖g‖2‖h‖2 with equality iff c1|g(x)|2 = c2|h(x)|2 ∀x ∈ X.

Apply Cauchy-Schwarz to h, 1. Then

|(h, 1)| ≤ ‖h‖2 ‖1‖2︸︷︷︸
=1

= ‖h‖2,
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since μ(X) = 1. Take g ∈ L2(X, C, μ). Since the simple functions are dense
in L2(X, C, μ), there is a simple function f with ‖g− f‖e < ε, ε > 0 arbitrary.
Let n ∈ N with

|(Un f , f )− ( f , 1)(1, f )| < ε.

We also have
‖Un f − Ung‖2 = ‖ f − g‖2 < ε.

Cauchy-Schwarz implies:

|(Un f , f )− (Ung, g)| = |(Un f , f )− (Un f , g) + (Un f , g)− (Ung, g)|
≤ |(Un f , f − g)|+ |(Un( f − g), g)|
≤ ‖Un f‖2‖ f − g‖2 + ‖Un( f − g)‖2‖g‖2

≤ ‖ f‖2ε + ε‖g‖2 = ε(‖ f‖2 + ‖g‖2).

Since ‖ f‖2 = ‖ f − g‖2 + ‖g‖2, we have ‖ f‖2 + ‖g‖2 ≤ 2‖g‖2 + ε.

|( f , 1)(1, f ) − (g, 1)(1, g)| = ∣∣|( f , 1)|2 − |(g, 1)|2∣∣
= |(| f , 1)|+ |(g, 1)|)(|( f , 1) − (g, 1)|)|
≤ (‖ f‖2 + ‖g‖2) (( f , 1)− (g, 1))︸ ︷︷ ︸

=( f−g,1)≤‖ f−g‖2

≤ (‖ f‖2 + ‖g‖2)‖ f − g‖2 ≤ (2‖g‖2 + ε)ε.

Hence,

|(Ung, g)− (g, 1)(1, g)| = |(Ung, g)− (Un f , f ) + (Un f , f )

− ( f , 1)(1, f ) + ( f , 1)(1, f ) − (g, 1)(1, g)|
≤ (2‖g‖2 + ε) + ε + (2‖g‖2 + ε)ε.

This implies (ii).

“(ii)⇒ (iii)”: We use (ii) for f + g:

(Un( f + g), f + g) → ( f + g, 1)(1, f + g) = ( f , 1)(1, f ) + (g, 1)(1, g)

+ ( f , 1)(1, g) + (g, 1)(1, f ).

Since by (ii) (Un f , f ) → ( f , 1)(1, f ) and (Ung, g) → (g, 1)(1, g), we have

(Un f , g) + (Ung, f ) → ( f , 1)(1, g) + (g, 1)(1, f ). (6)

For i f instead of f we obtain

i(Un f , g)− i(Ung, f ) → i( f , 1)(1, g) − i(g, 1)(1, f ). (7)

Dividing (7) by i and adding it to (6) gives 2(Un f , g) → 2( f , 1)(1, g).
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“(iii)⇒ (i)”: Let f = 1A and g = 1B. Then

(Un
T f , g)2

L2 =
∫

X
f (Tn(x))g(x)dμ(x) =

∫
X
1T−n(A)(x)1B(x)dμ(x)

=
∫

X
1T−n(A)∩Bdμ = μ(T−n(A) ∩ B)

and similarly
( f , 1)L2(1, g)L2 = μ(A)μ(B).

Hence, (iii) implies

lim
n→∞

μ(T−n(A) ∩ B) = μ(A)μ(B),

which finishes the proof. �

4.3 Corollary: Let T be a mixing transformation T on a probability space
(X, μ). Then UT has no eigenvalues on the unit circle except for 1.

Proof: Let U = UT. Suppose that λ �= 1, |λ| = 1, is an eigenvalue of UT,
i.e., there exists a nonconstant f ∈ L2(X, C, μ) with

(U f )(x) = λ f (x) for almost all x ∈ X.

W.l.o.g. assume that ‖ f‖L2 = 1. We have to show that T is not mixing. For
all n ∈ N we have

|(Un f , f )L2 | = |(λn f , f )L2 | = |λ|n |( f , f )| = 1.

On the other hand |(1, f )|2 < 1, since by Cauchy-Schwarz

|( f , 1)L2 |2 < ( f , f )L2(1, 1)L2 = ‖ f‖2
2‖1‖2

2 = 1.

This is a contradiction to Theorem 4.2 (ii). �
Consider again the irrational translation T(x) = x + θ, θ irrational. Then

UT(e2πi(·)︸ ︷︷ ︸
= f

)(x) = e2πi(x+θ) = e2πiθ e2πix︸︷︷︸
= f (x)

.

So e2πiθ �= 1 is an eigenvalue of UT, which lies on the unit circle. Hence, T
is not mixing.

4.4 Definition: Let T be measure-preserving on a probability space (X, μ).
For a real-valued function f ∈ L2(X, μ) we call

rn( f ) :=

∣∣∣∣∣
∫

X
f (Tn(x)) f (x)dμ(x) −

(∫
X

f (x)dμ(x)
)2
∣∣∣∣∣

the nth correlation coefficient of f .
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Clear: For a mixing transformation one has rn( f ) → 0 for n → ∞.

4.5 Example: Consider T(x) = x+
√

3− 1 (mod 1) on [0, 1). The Lebesgue
measure is invariant. For f (x) = x we have

∫
X f (x)dx = 1

2 , and

∫
X

f (Tn(x)) f (x)dx ≈ 1
s

s

∑
i=0

f (Tn(xi))xi, xi =
i
s

.

See the MAPLE program Correlation_Irr. ♦

4.2 Recurrence and First Return Time

4.6 Theorem (Poincaré’s Recurrence Theorem): Let T be measure-
preserving on a probability space (X, μ). Consider E ⊂ X with μ(E) > 0.
Then almost all x ∈ E are recurrent, i.e.,

Tnk(x) ∈ E for a sequence nk
k→∞−−→ ∞.

Special situation: X metric space, μ(A) > 0 for each nonempty open set A.
Again, T is μ-preserving. Choose x ∈ X. Poincaré implies: For every ε > 0
Tnk(Bε(x)) ∩ Bε(x) �= ∅ for a sequence nk → ∞.

Proof (of Poincaré’s Recurrence Theorem): For every n ∈ N0 let

En :=
∞⋃

k=n

T−k(E).

Then
⋂∞

n=0 En is the set of all points x ∈ X such that Tn(x) ∈ E infinitely
often. Put F := E ∩ (

⋂∞
n=0 En). We have to show that μ(F) = μ(E). If x ∈ F

there are 0 < n1 < n2 < · · · with Tni(x) ∈ E. Fix ni. Then for j > i

Tnj(x) = Tnj−ni(Tni(x)) ∈ E.

Hence, Tni(x) ∈ F. So we know that x returns to F infinitely often. Note
that T−1(En) = En+1. Hence,

μ(En) = μ(T−1(En)) = μ(En+1).

Furthermore, E0 ⊃ E1 ⊃ E2 ⊃ · · · . Thus,

μ

(
∞⋂

n=0

En

)
= lim

n→∞
μ(En) = μ(E0).

Similarly,
E0 ∩ E ⊃ E1 ∩ E ⊃ E2 ∩ E ⊃ · · · ,

48



which implies

μ(F) = μ

(
E ∩

∞⋂
n=0

En

)
= lim

n→∞
μ(En ∩ E) = μ(E0 ∩ E︸ ︷︷ ︸

=E

) = μ(E),

since E ⊂ E0. �

4.7 Definition: Let T : X � be measure-preserving on a probability space
(X, μ). Suppose μ(E) > 0, fix x ∈ E and define the first return time in E by

RE(x) := min {n ∈ N | Tn(x) ∈ E} .

Poincaré guarantees that RE(x) < ∞ for almost all x ∈ E. Define the first
return time transformation by

TE(x) := TRE(x)(x), TE : E → E.

Question: Are the maps x �→ RE(x) and x �→ TE(x) measurable and can we
describe their properties and relate them to properties of T?

4.8 Remarks:

• The map RE : E → R is measurable: Consider the set

R−1
E ((−∞, α]) = {x ∈ E | RE(x) ≤ α} , α ∈ R.

For α < 1 this is the empty set. For α ≥ 1 let k = [α] (the smallest
integer greater or equal than α). Then

{x ∈ E | RE(x) ≤ α} = E ∩
(

T−1(E) ∪ · · · ∪ T−k(E)
)

.

Since T is measurable, the sets T−k(E) are measurable, and hence also
R−1

E ((−∞, α]) is measurable. This proves the assertion.

• The map TE : E → E, x �→ TRE(x)(x), is also measurable: Let

Ek := {x ∈ E | RE(x) = k}, k ∈ N.

Let C ⊂ E be measurable. Then

T−1
E (C) =

∞⋃
k=1

(
Ek ∩ T−k(C)

)
.

Hence, T−1(C) is measurable, since T−1(C) is measurable and Ek is
measurable, since RE is measurable.

Recall that for E with μ(E) > 0 the conditional measure on E is μE(C) =
μ(C)
μ(E) , C ⊂ E.

49



4.9 Theorem:

(i) If T is measure-preserving on a probability space (X, μ) and if μ(E) >
0, then TE preserves μE.

(ii) If T is ergodic, then also TE is ergodic.

Proof:

(i) Only for invertible T with T−1 measurable (for general T the proof is
more technical):

μ(T−1(A)) = μ(A) for all A ⇔ μ(A) = μ(T(A)) for all A,

since T−1(T(A)) = T(T−1(A)) = A for all A ⊂ X. Define for every
n ∈ N

An := {x ∈ A | RE(x) = n} .

Then An is measurable and

A =
∞⋃

n=1

An (disjoint union).

Note that TE(An) = Tn(An). We find

μE(TE(A)) = μE

(
TE

(
∞⋃

n=1

An

))
=

∞

∑
n=1

μE(Tn(An))

=
∞

∑
n=1

μ(Tn(An))

μ(E)
=

∞

∑
n=1

μ(An)

μ(E)
=

μ(A)

μ(E)
= μE(A).

(ii) Ergodicity: Let B ⊂ E be invariant for TE and suppose μE(B) > 0. By
invariance

B = T−1
E (B) = T−2

E (B) = . . .

Hence,

B =

(
∞⋃

n=0

T−n(B)

)
∩ E.

Since μ is ergodic, we have μ(
⋃∞

n=0 T−n(B)) = 1. Hence,

∞⋃
n=0

T−n(B) = X.

It follows that B = E, so μE(B) =
μ(B)
μ(E) = 1.

�
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4.10 Theorem (Kać Lemma): If T is an ergodic measure-preserving map
on a probability space (X, μ), and if μ(E) > 0, then∫

E
REdμ = 1,

i.e.,
∫

E REdμE = 1
μ(E) .

Proof: We give two proofs:

(i) For invertible T: For n ≥ 1 let

En := {x ∈ E | RE(x) = n} .

Then En ∩ Em = ∅ if n �= m, and

E =
∞⋃

n=1

En

by Poincaré. Since T is ergodic, for all A, B ⊂ X with μ(A), μ(B) > 0
there is k ∈ N with μ(T−n(A) ∩ B) > 0. Hence, there exists no set
A ⊂ X of positive measure with μ(T−k(A) ∩ E) = 0 for all k ∈ N,
which implies that for almost all x ∈ X we find k ∈ N with T−k(x) ∈
E. This implies

X =
∞⋃

n=1

n−1⋃
k=0

Tk(En). (8)

Observe that the sets En, T(En), T2(En), . . . , Tn−1(En) are disjoint. By
ergodicity and injectivity of T

μ(Tk(En)) = μ(En) for all k.

Hence, (8) is a disjoint union. We compute∫
E

REdμ =
∞

∑
n=1

∫
En

REdμ =
∞

∑
n=1

nμ(En)
(8)
= μ(X) = 1.

(ii) Proof for not necessarily invertible T: Take x ∈ E and consider

x, TE(x), . . . , Tl
E(x), . . . , TL

E (x), L ∈ N.

Let

N =
L−1

∑
l=0

RE(Tl
E(x)).

Then N is the time duration for the iterates Tn(x), n = 1, . . . , N, to
come back to E exactly L times, i.e.,

N

∑
n=1

1E(Tn(x)) = L.
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Now apply Birkhoff’s Ergodic Theorem to the map TE and f = RE.
Then∫

E
REdμE = lim

L→∞

1
L

L−1

∑
l=0

RE(Tl
E(x)) = lim

N→∞

N

∑N
n=1 1E(Tn(x))

=

(
lim

N→∞

1
N

N

∑
n=1

1E(Tn(x))

)−1

.

Hence, applying Birkhoff’s Ergodic Theorem for T and f = 1E gives∫
E

REdμE =
1

μ(E)
.

�

4.3 Mixing Markov Shift Transformations

Let A = {1, . . . , k} (symbols, alphabet) and X = ∏∞
1 A. The shift T = θ :

X � is defined by (x1, x2, x3, . . .) �→ (x2, x3, . . .). The ( 1
2 , 1

2)-Bernoulli Shift
on {0, 1}:

μ ([a1, . . . , an]t,...,t+k−1) =
( 1

2

)n
.

Markov measures: Are given by a stochastic k× k-matrix P = (pij) (∑j pij =
1, pij ≥ 0). There exists an eigenvector πP = π, π ≥ 0, ∑i πi = 1. All πi
are positive if P is irreducible, i.e., for all i and j there exists m ∈ N with
(Pm)ij > 0. Markov measure:

μ([a1, . . . , an]t,...,t+n−1) = πa1 pa1a2 · · · pan−1an .

This is shift-invariant. μ is ergodic iff P is irreducible (then π is unique)
(Theorem 3.17).

Question: Can we characterize the mixing property of μ via the matrix P?
(i.e., when is μ(θ−n(A) ∩ B) → μ(A)μ(B) for n → ∞ satisfied?)

If P is irreducible, then (cp. proof of Theorem 3.17)

Q := lim
n→∞

1
n

n−1

∑
j=0

Pj

exists and each row of Q equals π, and π j > 0 for all j.

4.11 Definition: A stochastic matrix A is called eventually positive if for
all n large enough

(An)ij > 0 for all i, j = 1, . . . , k.
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4.12 Proposition: If A is an eventually positive stochastic matrix, then the
eigenvalue λ = 1 is simple (the algebraic multiplicity equals 1) and all
eigenvalues μ �= 1 satisfy |μ| < 1.

Proof: See Robinson [5] or Gantmacher [6]. �

4.13 Theorem: Let P be a stochastic k × k-matrix with eigenvector π =
(πi) satisfying πP = π, π ≥ 0, ∑ πi = 1. For A = {1, . . . , k} let T be
the associated Markov shift transformation on X = ∏∞

1 A with shift invari-
ant Markov measure μ. Suppose P is irreducible. Then the following are
equivalent:

(i) T is mixing.

(ii) (Pn)ij converges to π j for n → ∞ for all i, j = 1, . . . , k.

(iii) P is eventually positive.

Proof: Put Q := limN→∞
1
N ∑N−1

n=0 Pn. Since P is irreducible, μ is ergodic,
and Q exists, each row of Q equals π, π j > 0 for all j.
“(i) ⇒ (ii)”: Suppose T is mixing, i.e.,

μ(T−n(A) ∩ B) → μ(A)μ(B) for all A, B.

Let A := [j]1 and B := [i]1. Claim:

μ(T−n(A) ∩ B) = πj(Pn)ji → μ(A)μ(B) = πjπi.

This shows that (Pn)ji → πi for every i and j, i.e., Pn → Q for n → ∞.

“(ii) ⇒ (iii)”: By (ii) Pn → Q and all entries of Q are positive. Hence, for n
large enough, (Pn)ij > 0 for all i and j. Thus, P is eventually positive.

“(iii) ⇒ (i)”: It suffices to show

μ(Tn(A) ∩ B) → μ(A)μ(B)

for cylinder sets A, B. Let A = [i1, . . . , ir ]a+r−1
a and B = [j1, . . . , js]b+s−1

b .
Let J be the Jordan canonical form of P. Since λ = 1 is simple and all
eigenvalues μ �= 1 satisfy |μ| < 1, we get

J =

⎛
⎜⎜⎜⎝

1
Mμ1

. . .
Mμl

⎞
⎟⎟⎟⎠ , Mμi =

⎛
⎜⎜⎜⎜⎝

μi 1
· ·

· ·
· 1

μi

⎞
⎟⎟⎟⎟⎠

with Mn
μi

→ 0 for n → ∞. This implies Jn → diag(1, 0, . . . , 0). Hence,
Pn converges for n → ∞. Since 1

n ∑n−1
k=0 Pk converges to Q, also Pn must
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converge to Q.

μ(T−n(A) ∩ B) = πj1 Pj1 j2 · · · Pjs−1 js︸ ︷︷ ︸
=μ(B)

(Pn)js i1︸ ︷︷ ︸
→Qjsi1=πi1

Pi1i2 · · · Pir−1ir︸ ︷︷ ︸
= 1

πi1
μ(A)

n→∞−→ μ(B)μ(A).

�

4.14 Theorem: In Theorem 4.13 the speed of convergence of Pn to Q is
exponential, i.e.,

‖Pn − Q‖ ≤ αβn

with constants α > 0, β ∈ (0, 1), for some (and then for all) norms in Rn×n.

Proof: All norms on the vector space Cn×n are equivalent: For any two
norms ‖ · ‖ and ‖ · ‖′ there are constants c1, c2 > 0 with

c1‖A‖ ≤ ‖A‖′ ≤ c2‖A‖.

Let S be invertible with S−1PS = J, the Jordan canonical form. Then

‖A‖′ := ‖S−1 AS‖, A ∈ Cn×n,

defines a norm, and
c1‖A‖ ≤ ‖A‖′ ≤ c2‖A‖

for constants c1, c2 > 0. Hence,

c1‖Pn − Q‖ ≤ ‖S−1(Pn − Q)S‖︸ ︷︷ ︸
=‖Pn−Q‖′

≤ c2‖Pn − Q‖.

Recall: Since P is eventually positive, 1 is an algebraically simple eigen-
value and all other eigenvalues satisfy |μ| < 1. Thus,

J =

⎛
⎜⎜⎜⎝

1
Mμ1

. . .
Mμk

⎞
⎟⎟⎟⎠

Claim:

S−1(Pn − Q)S = S−1PnS − S−1QS = Jn − diag(1, 0, . . . , 0).

Observe that, if all Jordan blocks are one-dimensional, exponential conver-
gence of Jn to S−1QS is clear. We only have to deal with the problem that
the Jordan blocks may be higher dimensional. Now use the norm

‖A‖∞ := max
i,j

|Aij|.
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For a Jordan block Mμ = μI + N with |μ| < 1,

N =

⎛
⎜⎜⎜⎜⎝

0 1
· ·

· ·
· 1

0

⎞
⎟⎟⎟⎟⎠

we have Nk = 0. Hence,

Mn
μ =

k

∑
j=0

(
k
j

)
μn−jNj, n ≥ k.

Let η := max{‖I‖∞, ‖N‖∞ , . . . , ‖Nk−1‖∞}. Then for n ≥ k

‖Mn
μ‖∞ ≤ η

k−1

∑
j=0

(
n
j

)
|μ|n−j ≤ ηknk−1|μ|n−k+1.

Observe that η and k are fixed and

nk−1|μ|n = e(k−1) ln(n)en ln |μ| = en[(k−1) ln(n)
n +ln |μ|].

Since ln(n)
n → 0 for n → ∞ and ln |μ| < 0, this is bounded above for n large

enough by
en ln(β) = βn for β with |μ| < β < 1.

Together

‖Mn
μ‖∞ ≤ αβn for a constant α > 0 and β ∈ (0, 1).

This shows that
‖Jn − diag(1, . . . , 0)‖∞ ≤ αβn,

hence the same for ‖Pn − Q‖ holds. �
Note the difference between irreducibility and eventual positivity:

P :=
(

0 1
1 0

)
→ P2 =

(
1 0
0 1

)
.

Hence, P is irreducible, but it is not eventually positive, since

(
0 1
1 0

)2n+1

=

(
0 1
1 0

)
for all n ∈ N.
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5 Entropy

5.1 Definition and Elementary Properties

Simple situation (without map): Consider an experiment with uncertainty
described by a set A = {a1, . . . , ak}. Let pi be the probability of the outcome
ai. Then

p1 + · · ·+ pk = 1.

If p1 is close to 1, we would mostly obtain a1. If we measure the surprise or
information that we get from some outcome, it would be close to 0, if the
outcome is a1 with probability close to 1. How to measure the information?
For the outcome ai the magnitude of information is 1

pi
. Instead we take

log 1
pi

(p1 ≈ 1 → log 1
p1

≈ 0). The expected information from an experiment
is

k

∑
i=1

pi log
1
pi

= −
k

∑
i=1

pi log pi.

This is called the entropy of A (the expected information from an experi-
ment). Usually log is taken as logarithm with base 2.

In general: An experiment corresponds to a measurable partition

P = {E1, . . . , En}
of a probability space (X,A, μ). The entropy of this partition is defined as

H(P) =
n

∑
i=1

pi log
1
pi

= −
n

∑
i=1

pi log pi,

with pi = μ(Ei), where pi log pi := 0 if pi = 0. Consider a map T : X �
which is μ-preserving. Idea: How much information do we gain by apply-
ing T?

First a simple estimate for the entropy of a partition:

5.1 Lemma: If a partition P consists of k subsets, then H(P) ≤ log k.

Proof: Recall for a > 0
ln a
ln 2

= log2 a.

We have to show

−
k

∑
i=1

pi ln pi ≤ ln k

for all p1, . . . , pk ∈ (0, 1), ∑k
i=1 pi = 1. We show that

max

(
−

k

∑
i=1

pi ln pi

)
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over p1, . . . , pk > 0 with ∑i pi = 1 equals ln k. A necessary condition for a
maximum is that there is λ ∈ R such that

f (p1, . . . , pk) = −
k

∑
i=1

pi ln pi + λ

(
k

∑
i=1

pi − 1

)

has Jacobian equal to zero, and ∑k
i=1 pi = 1.

∂ f
∂pj

= − ln pj − pj
1
pj

+ λ = λ − 1 − ln pj = 0

for j = 1, . . . , k. Together with p1 + · · · + pk = 1 this shows that the maxi-
mum can only be attained if p1 = · · · = pk =

1
k . Then

−
k

∑
i=1

pi ln pi = −
k

∑
i=1

1
k

ln
1
k
= − ln

1
k
= ln k,

as claimed. (Since there is a maximum and it cannot be attained on the
boundary, the necessary condition is also sufficient.) �
Given two partitions P and Q, the join of P and Q is the partition P ∨ Q
consisting of all sets of the form B ∩ C with B ∈ P and C ∈ Q. Analo-
gously, the join

∨n
i=1 Pi of finitely many measurable partitions P1, . . . ,Pn is

defined. Fix a partition P and consider T : X �. Let

T−jP = {T−jE1, . . . , T−jEk}, P = {E1, . . . , Ek}.

This again is a partition. Let

Pn := P ∨ T−1P ∨ . . . ∨ T−(n−1)P .

Define the entropy of T with respect to P as

h(T,P) := lim
n→∞

1
n

H(Pn). (9)

Finally, the entropy of T is

h(T) := sup
P

h(T,P),

where the supremum is taken over all finite measurable partitions of X. We
have to show that the limit in (9) exists. To this end, we use the following
two lemmas.

5.2 Lemma: Let P = {C1, . . . , Cr} and Q = {D1, . . . , Ds} be measurable
partitions of X. Then

H(P ∨Q) ≤ H(P) + H(Q).
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Proof: We have

H(P ∨Q) = −∑
i,j

μ(Ci ∩ Dj) log μ(Ci ∩ Dj)

= −∑
i,j

μ(Ci ∩ Dj) log
[

μ(Ci)
μ(Ci ∩ Dj)

μ(Ci)

]
= −∑

i,j
μ(Ci ∩ Dj) log μ(Ci)

− ∑
i,j

μ(Ci)
μ(Ci ∩ Dj)

μ(Ci)
log

μ(Ci ∩ Dj)

μ(Ci)

= −∑
i

μ(Ci) log μ(Ci)︸ ︷︷ ︸
=H(P)

− ∑
j

[
∑

i
μ(Ci)

μ(Ci ∩ Dj)

μ(Ci)
log

μ(Ci ∩ Dj)

μ(Ci)

]
.

Consider the map ϕ(x) = x log x. ϕ is convex. Jensen’s Inequality (Elstrodt
[7]): Let f : X → R be integrable on a probability space (X, μ) and ϕ : R →
R be convex. Then

ϕ

(∫
X

f dμ

)
≤
∫

X
ϕ ◦ f dμ.

Claim:

−∑
i

μ(Ci)
μ(Ci ∩ Dj)

μ(Ci)
log

μ(Ci ∩ Dj)

μ(Ci)
≤ −μ(Dj) log μ(Dj). (10)

This implies H(P ∨Q) ≤ H(P) + H(Q). Define

f (x) := ∑
i

μ(Ci ∩ Dj)

μ(Ci)
1Ci(x), f : X → R.

Then
∫

X f dμ = μ(Dj) and therefore

ϕ

(∫
X

f dμ

)
=
∫

X
f dμ log

∫
X

f dμ = μ(Dj) log μ(Dj).

On the other hand:∫
X

ϕ ◦ f dμ =
∫

X
f (x) log f (x)dμ(x)

=
∫

X
∑

i

μ(Ci ∩ Dj)

μ(Ci)
1Ci(x) log

[
∑
k

μ(Ck ∩ Dj)

μ(Ck)
1Ck(x)

]
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= ∑
i

∫
Ci

μ(Ci ∩ Dj)

μ(Ci)
log

[
∑
k

μ(Ck ∩ Dj)

μ(Ck)
1Ck(x)

]
dμ(x)

= ∑
i

∫
Ci

μ(Ci ∩ Dj)

μ(Ci)
log

[
μ(Ci ∩ Dj)

μ(Ci)

]
dμ

= ∑
i

μ(Ci ∩ Dj) log
μ(Ci ∩ Dj)

μ(Ci)
.

This proves (10). �

5.3 Remark: The equality H(P ∨Q) = H(P) + H(Q) holds if for all i and
j we have μ(Ci ∩ Dj) = μ(Ci)μ(Dj). Then it follows

−∑
i

μ(Ci)
μ(Ci ∩ Dj)

μ(Ci)
log

μ(Ci ∩ Dj)

μ(Ci)
= −∑

i
μ(Ci)︸ ︷︷ ︸
=1

μ(Dj) log μ(Dj).

Two partitions with this property are called independent. Actually H(P ∨
Q) = H(P) + H(Q) holds if and only if P and Q are independent.

5.4 Lemma: Let (an)n∈N be a sequence of real numbers with an ≥ 0 and
an+m ≤ an + am for all n, m ∈ N. Then

lim
n→∞

an

n
= inf

n∈N

an

n
=: a.

Proof: Fix ε > 0. There is N ∈ N with aN
N < a + ε. For every n ∈ N we can

write n = kN + r with k, r ∈ N0 and 0 ≤ r < N. Then
an

n
≤ 1

n
[kaN + ar] ≤ k

kN
aN +

ar

n
=

aN

N
+

ar

n
.

Since ar
n → 0 for n → ∞, we find n0 ∈ N such that an

n < a + 2ε for all
n ≥ n0. This implies the assertion. �
Now we can conclude that the limit in (9) exists: Consider the sequence
(H(Pn)). Note that, since T is μ-preserving, for all j ∈ N and every parti-
tion P = {E1, . . . , En} we have

H(T−jPn) = −∑
i

μ(T−j(Ei)) log μ(T−j(Ei))

= −∑
i

μ(Ei) log μ(Ei) = H(P). (11)

Hence, for all n, m ∈ N we obtain

H(Pn+m) = H(P ∨ T−1P ∨ · · · ∨ T−(n−1)P︸ ︷︷ ︸
=Pn

∨ T−nP ∨ · · · ∨ T−(n+m−1)P︸ ︷︷ ︸
=T−nPm

)

Lem. 5.2≤ H(Pn) + H(T−nPm)
(11)
= H(Pn) + H(Pm).

By Lemma 5.4 it follows that the limit (9) exists.
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5.5 Lemma: Let P be a refinement of the partition Q, i.e., the elements of
Q are unions of elements from P . Then

H(P) ≥ H(Q).

Proof: Let Q = {D1, . . . , Dr}. We have H(Q) = − ∑j μ(Dj) log μ(Dj) and
Dj is the disjoint union of sets Cji ∈ P . Hence, μ(Dj) = ∑i μ(Cji), which
implies

H(Q) = −∑
j

∑
i

μ(Cji) log ∑
i

μ(Cji)︸ ︷︷ ︸
≥μ(Cjk

) for all k

≤ −∑
j

∑
i

μ(Cji) log μ(Cji) = H(P).

�

5.2 Conditional Entropy

If we want to compute entropies, we will have to discuss several ques-
tions:

• It seems extremely difficult to compute the supremum h(T,P) over all
partitions.
Question: When does there exist a partition P with h(T,P) = h(T)?

• For doing computation it will be essential to understand precisely what
happens when we refine a partition. Up to now, we only know

H(P) ≥ H(Q) if P refines Q.

Let us start with the following observation on measurable partitions of a
measure space (X,A, μ):

X = D1∪̇ . . . ∪̇Dk.

It does not matter, if we change Di only in a set of μ-measure 0, hence we
consider measurable partitions mod 0: This means: P and P ′ are identified
if there is a set A with μ(A) = 0, such that the restrictions of P and P ′ to
X\A coincide. Furthermore, partition sets of measure 0 do not play a role,
so usually, we will assume that all partition sets have positive measure.
Finally, sometimes we will also allow countable partitions instead of finite
ones.

Let P = {Ci | i ∈ I} be a measurable partition and recall

Hμ(P) = −∑
i

μ(Ci) log μ(Ci).
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For x ∈ X let CP(x) be the unique element of P containing x. The function

IP(x) = − log μ(CP(x))

is called the information function of P (defined outside of the set of measure
0 with μ(CP(x)) = 0). Then

Hμ(P) =
∫

X
IPdμ = ∑

i
μ(Ci)(− log μ(Ci)),

since on every element of P IP (x) is constant.

Next write for the conditional probability

μ(A|B) = μ(A ∩ B)
μ(B)

.

Interpretation: This is the probability of A provided B occurs. A and B are
called independent, if μ(A ∩ B) = μ(A)μ(B), hence, in this case, μ(A|B) =
μ(A) (occurrence of B does influence occurrence of A).

Next we introduce the conditional entropy.

5.6 Definition: Let P = {Cα | α ∈ I} and Q = {Dβ | β ∈ J} be two
measurable partitions of (X, μ). The conditional entropy of P with respect
to Q is

H(P|Q) := − ∑
β∈J

μ(Dβ) ∑
α∈I

μ(Cα|Dβ) log μ(Cα|Dβ).

The intuitive meaning of the conditional entropy H(P|Q) is that it is the
expected amount of information gained by the experiment P given the re-
sults of the experiment Q.

5.7 Remark: If Q = {X} is the trivial partition, then H(P|Q) = H(P).
Using an information function, one can write the conditional entropy as

H(P|Q) =
∫

X
IP ,Qdμ,

where IP ,Q is the conditional information function

IP ,Q(x) = − log μ(CP(x)|DQ(x)).

5.8 Remark: Denote by PDβ
the partition of Dβ into the sets Dβ ∩Cα, α ∈ I,

such that μ(Dβ ∩ Cα) > 0. Then

H(P|Q) = ∑
β∈J

μ(Dβ)HμDβ
(PDβ

)

= ∑
β∈J

μ(Dβ)

(
−∑

α

μβ(Cα) log μβ(Cα)

)

= − ∑
β∈J

μ(Dβ)∑
α

μ(Dβ ∩ Cα)

μ(Dβ)
log

μ(Dβ ∩ Cα)

μ(Dβ)
.
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Next we collect a number of basic properties.

5.9 Proposition: Let (X,A, μ) be a probability space and let P = {Cα | α ∈
I}, Q = {Dβ | β ∈ J} and R = {Eγ | γ ∈ K} be finite or countable
measurable partitions of X. Then the following statements hold:

(i) 0 ≤ H(P|Q) ≤ H(P).

(ii) H(P|Q) = H(P) iff P and Q are independent.

(iii) H(P|Q) = 0 iff Q is finer than P .

(iv) If R ≥ Q, then H(P|R) ≤ H(P|Q).

Proof:

(i) ϕ(x) = x log x is a convex function. Hence,

0 ≤ H(P|Q) = − ∑
β∈J

μ(Dβ) ∑
α∈I

ϕ(μ(Cα|Dβ))

= − ∑
α∈I

∑
β∈J

μ(Dβ)ϕ(μ(Cα|Dβ))

ϕ convex
≤ − ∑

α∈I
ϕ

(
∑
β∈J

μ(Dβ)
μ(Cα ∩ Dβ)

μ(Dβ)

)

= − ∑
α∈I

ϕ(μ(Cα)) = H(P).

(ii) Recall ϕ(x) < 0 iff x ∈ (0, 1). H(P|Q) = 0 implies for every β
(μ(Dβ) > 0): ϕ(μ(Cα|Dβ)) = 0, and consequently μ(Cα|Dβ) ∈ {0, 1}.
Hence,

μ(Cα ∩ Dβ) = 0 or μ(Cα ∩ Dβ) = μ(Dβ),

i.e., Cα ∩ Dβ = ∅(mod 0) or Dβ ⊂ Cα(mod 0). Thus, Q ≥ P (mod 0).
The converse is obvious.

(iii) If H(P|Q) = H(P), then equality must hold in the inequality used
for (i), then equality must hold for every summand, i.e.,

ϕ(μ(Cα)) = ϕ

⎛
⎝ ∑

β∈J, μ(Dβ)>0

μ(Dβ)μ(Cα|Dβ)

⎞
⎠

= ∑
β∈J, μ(Dβ)>0

μ(Dβ)ϕ(μ(Cα|Dβ)).

By strict convexity of ϕ this implies that μ(Cα|Dβ) must be indepen-
dent of β and hence μ(Cα|Dβ) = μ(Cα). Hence, P and Q are inde-
pendent. The converse is obvious.
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(iv) Suppose R is a refinement of Q, R ≥ Q (mod 0). Consider, for D ∈
Q, the conditional measure

μD(·) = μ(·|D).

Then
HμD(P|R) ≤ HμD(P) by (i).

Now

H(P|R) = H(P|Q ∨R) = −∑
γ

μ(Eγ)∑
α

μ(Cα|Eγ) log μ(Cα|Eγ)

= −∑
β

∑
γ: Eγ⊂Dβ

μ(Eγ)

︸ ︷︷ ︸
=μ(Dβ)

∑
α

μ(Cα ∩ Dβ ∩ Eγ)

μ(Dβ ∩ Eγ)
log

μ(Cα ∩ Dβ ∩ Eγ)

μ(Dβ ∩ Eγ)︸ ︷︷ ︸
=−HμDβ

(P|R)≥−HμDβ
(P)

≤ ∑
β

μ(Dβ)HμDβ
(P) = H(P|Q).

�

5.10 Proposition: Under the assumptions of Proposition 5.9 the following
statements hold:

(i) H(P ∨Q|R) = H(P|R) + H(Q|P ∨R). In particular, H(P ∨Q) =
H(P) + H(Q|P).

(ii) H(P ∨ Q|R) ≤ H(P|R) + H(Q|R). In particular, H(P ∨ Q) ≤
H(P) + H(Q).

(iii) H(P|Q) + H(Q|R) ≥ H(P|R).

(iv) If λ is another probability measure on X, then for every measurable
partition P and for every p ∈ [0, 1]

pHμ(P) + (1 − p)Hλ(P) ≤ Hpμ+(1−p)λ(P).

Proof:
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(i) We have

H(P ∨Q|R) = −∑
γ

μ(Eγ)∑
α,β

μ(Cα ∩ Dβ|Eγ) log μ(Cα ∩ Dβ|Eγ)

= − ∑
α,β,γ

μ(Cα ∩ Dβ ∩ Eγ) log
μ(Cα ∩ Dβ ∩ Eγ)

μ(Eγ)

= − ∑
α,β,γ

μ(Cα ∩ Dβ ∩ Eγ) log
μ(Cα ∩ Eγ)

μ(Eγ)

− ∑
α,β,γ

μ(Cα ∩ Dβ ∩ Eγ) log
μ(Cα ∩ Dβ ∩ Eγ)

μ(Cα ∩ Eγ)

= −∑
α,γ

μ(Cα ∩ Eγ) log
μ(Cα ∩ Eγ)

μ(Eγ)
+ H(Q|P ∨R)

and

H(Q|P ∨R) = −∑
α,γ

μ(Cα ∩ Eγ)∑
β

μ(Cα ∩ Eγ ∩ Dβ)

μ(Cα ∩ Eγ)
log

μ(Cα ∩ Eγ ∩ Dβ)

μ(Cα ∩ Eγ)
,

H(P|R) = −∑
γ

μ(Eγ)∑
α

μ(Cα ∩ Eγ)

μ(Eγ)
log

μ(Cα ∩ Eγ)

μ(Eγ)
.

Hence,
H(P ∨Q|R) = H(P|R) + H(Q|P ∨R).

(ii) This follows from (i):

H(P ∨Q|R) = H(P|R) + H(Q|P ∨R) ≤ H(P|R) + H(Q|R),

since P ∨R ≥ R.

(iii) Note that by (i) and (ii)

H(R|P ∨Q)
(i)
= H(P ∨R|Q)− H(P|Q)

(ii)
≤ H(R|Q).

Using (i) several times we find

H(P|Q) + H(Q|R) = H(P ∨Q)− H(Q) + H(R∨Q)− H(R)
(i)
= H(P ∨Q) + H(R|Q)− H(R)
(i)
= H(P ∨Q∨R)− H(R|P ∨ Q) + H(R|Q) − H(R)

≥ H(P ∨Q∨R)− H(R)

≥ H(P ∨R)− H(R)
(i)
= H(P|R).

(iv) This follows from convexity of ϕ.
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�

5.11 Corollary: For two finite measurable partitions P and Q let

dR(P ,Q) := H(P|Q) + H(Q|P).

Then dR is a metric on the set of all equivalence classes (mod 0) of finite
measurable partitions of X. It is called the Rokhlin metric.

Proof: dR(P ,Q) ≥ 0 is clear. If dR(P ,Q) = 0, then H(P|Q) = 0 and
H(Q|P) = 0. Hence, Q ≤ P and P ≤ Q, which implies P = Q (mod
0). Symmetry is clear by definition. Finally, the triangle inequality follows
from Proposition 5.10 (iii):

dR(P ,R) = H(P|R) + H(R|P)

≤ H(P|Q) + H(Q|R) + H(R|Q) + H(Q|P)

= dR(P ,Q) + dR(Q,R).

�

5.3 Properties of Entropy

We analyze properties of the entropy h(T,P) as a function of the partition
P .

5.12 Proposition: Let T : (X, μ) � be a measure-preserving map on a
probability space and let P = {Cα | α ∈ I} and Q be finite measurable
partitions of X. Then the following statements hold:

(i) 0 ≤ lim supn→∞

(
− 1

n log supC∈Pn
μ(C)

)
≤ h(T,P) ≤ H(P).

(ii) h(T,P ∨Q) ≤ h(T,P) + h(T,Q).

(iii) h(T,P) ≤ h(T,Q) + H(P|Q). In particular, if Q is a refinement of P
(P ≤ Q), then h(T,P) ≤ h(T,Q).

(iv) |h(T,P) − h(T,Q)| ≤ H(P|Q) + H(Q|P) = dR(P ,Q) (the Rokhlin
Inequality).6

Proof:

(i) The first inequality is obvious, the last follows from Ex. 1 on Sheet 9:

h(T,P) = lim
n→∞

H(P|T−1Pn)
∀n≤ H(P|T−1Pn)

Prop. 5.9 (i)
≤ H(P).

6This shows that h(T, ·) is a Lipschitz continuous function with Lipschitz constant 1 on
the space of finite measurable partitions with the Rokhlin metric.
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The middle inequality follows, since for every partition R =
{Eγ | γ ∈ K}

− log sup
γ

μ(Eγ) = inf
x∈X

IR(x)︸ ︷︷ ︸
=− log μ(EP(x))

.

Then
H(R) =

∫
X

IRdμ ≥ − log sup
γ

μ(Eγ).

This shows that for every n ≥ 1

− log sup
C∈Pn

μ(C) ≤ H(Pn).

Hence,

h(T,P) = lim
n→∞

1
n

H(Pn) ≥ lim sup
n→∞

(
− 1

n
log sup

C∈Pn

μ(C)

)
.

(ii) We have

(P ∨Q)n = (P ∨Q)∨T−1(P ∨Q)∨ · · · ∨T−(n−1)(P ∨Q) = Pn ∨Qn.

Hence, by Proposition 5.10 (i)

H((P ∨Q)n) = H(Pn ∨Qn) = H(Pn) + H(Qn|Pn)

and by Proposition 5.9 (i)

h(T,P ∨Q) = lim
n→∞

1
n

H((P ∨Q)n)

= lim
n→∞

1
n
[H(Pn) + H(Qn|Pn)]

≤ lim
n→∞

1
n

H(Pn) + lim
n→∞

1
n

H(Qn)

= h(T,P) + h(T,Q).

(iii) The particular case is clear, since P ≤ Q implies H(P|Q) = 0 by
Proposition 5.9 (iii). Further we obtain

H(Pn) ≤ H(Pn ∨Qn) = H(Qn) + H(Pn|Qn).

Note that

Pn = P ∨ T−1P ∨ . . . ∨ T−(n−1)P = P ∨ T−1Pn−1.
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Hence,

H(Pn|Qn) = H(P ∨ T−1Pn−1|Qn)

= H(P|Qn) + H(T−1Pn−1|P ∨ Qn)

≤ H(P|Q) + H(T−1Pn−1|Qn)

≤ H(P|Q) + H(T−1P|T−1Q)︸ ︷︷ ︸
=H(P|Q) by invariance

+H(T−2Pn−2|Qn)

≤ nH(P|Q).

The last inequality follows inductively. Thus,

h(T,P) = lim
n→∞

1
n

H(Pn) ≤ lim
n→∞

1
n
[H(Qn) + nH(P|Q)]

= h(T,Q) + H(P|Q).

(iv) This follows immediately from (iii).

�

5.13 Proposition: Under the assumptions of Proposition 5.12 the follow-
ing statements hold:

(i) h(T, T−1P) = h(T,P) and if T is invertible, h(T,P) = h(T, TP).

(ii) h(T,P) = h(T,
∨k

i=0 T−iP) for all k ∈ N, and if T is invertible,
h(T,P) = h(T,

∨k
i=−k TiP) for all k ∈ N.

Proof:

(i) This follows from the invariance property, since

H((T−1P)n) = H(T−1P ∨ T−2P ∨ · · · ∨ T−nP)

= H(P ∨ T−1P ∨ · · · ∨ T−(n−1)P) = H(Pn)

and

h(T,P) = lim
n→∞

1
n

H(Pn) = lim
n→∞

H((T−1P)n) = h(T, T−P).

For invertible T the proof works analogously.

(ii) Observe that(
k∨

i=0

T−iP
)

n

=
(
P ∨ T−1P ∨ · · · ∨ T−kP

)
n

= P ∨ · · · ∨ T−(n+k−1)P = Pn+k,
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and hence,

h

(
T,

k∨
i=0

T−iP
)

= lim
n→∞

1
n

H(Pn+k)

= lim
n→∞

n + k
n︸ ︷︷ ︸
→1

1
n + k

H(Pn+k)

= lim
n→∞

1
n + k

H(Pn+k) = h(T,P).

Again, for invertible T the argument is completely analogous.

�
Recall: The entropy of T is h(T) = supP h(T,P). We want: not all finite
measurable partitions, but a subfamily.

5.14 Definition: A family P̂ of finite measurable partitions is called suffi-
cient, if

(i) for noninvertible T the partitions Q with

Q ≤
k∨

i=0

T−iP for some k ∈ N and P ∈ P̂

form a dense subset of the set of all finite measurable partitions with
respect to the Rokhlin metric.

(ii) for invertible T the same holds for the partitions Q with

Q ≤
k∨

i=−k

T−iP for some k ∈ N and P ∈ P̂ .

5.15 Theorem: For every sufficient family P̂ it holds that

hμ(T) = sup
P∈P̂

h(T,P).

Proof: Let T be noninvertible. Let R be an arbitrary finite measurable par-
tition. Fix ε > 0 and find P ∈ P̂ and k ∈ N such that for some partition Q
with

Q ≤
k∨

i=0

T−iP

one has
dR(R,Q) = H(R|Q) + H(Q|R) < ε.
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Then, using the Rokhlin Inequality,

h(T,R) ≤ h(T,Q) + dR(R,Q) ≤ h(T,Q) + ε

≤ h

(
T,

k∨
i=0

T−iP
)
+ ε = h(T,P) + ε.

The last equality follows from Proposition 5.13 (ii). The proof for invertible
T works analogously. �

5.16 Proposition: Assume that μ is a non-atomic Borel measure on a com-
pact metric space X, i.e., it is defined on the σ-algebra generated by the
open sets and

μ ({x}) = 0 for all x ∈ X.

Then every family (P k)k∈N of finite measurable partitions with

max
C∈P k

diam C k→∞−−→ 0

is a sufficient family.

Proof: Let R = {Eγ | γ ∈ K}, μ(Eγ) > 0, be a finite measurable partition of
X. Let ε > 0. We show that there is k ∈ N such that for a finite measurable
partition Q ≤ P k

dR(R,Q) = H(R|Q) + H(Q|R) < ε.

Such a partition Q consists of (finite) unions of elements of P k. Let Eγ ∈ R.
Choosing k large enough one can let

μ(Eγ ∩ Dβ)

be arbitrarily close to μ(Dβ) for some Q ≤ P k, Q = {Dβ | β ∈ J} (Here
regularity of Borel measures is used!) Thus,

μ(Eγ ∩ Dβ)

μ(Dβ)

can be made arbitrarily close to 1. Since φ(x) = x log x is continuous with
φ(1) = 0, one can make

φ

(
μ(Eγ ∩ Dβ)

μ(Dβ)

)
be arbitrarily close to 0, for each of the finitely many Eγ. Thus, choosing k
large enough,

H(R|Q) = −∑
β

μ(Dβ)∑
γ

μ(Eγ ∩ Dβ)

μ(Dβ)
log

μ(Eγ ∩ Dβ)

μ(Dβ)

= −∑
β

μ(Dβ)∑
γ

φ

(
μ(Eγ ∩ Dβ)

μ(Dβ)

)
<

ε

2
.
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Similarly, one can get H(Q|R) < ε
2 . �

5.17 Definition: A partition P is called a generator if P̂ = {P} is a suffi-
cient family.

Thus, a generator P has the property that the partitions Q with

Q ≤
k∨

i=0

T−iP = Pk

are dense in the set of all finite partitions.

5.18 Corollary: If P is a generator for T, then hμ(T) = hμ(T,P).

5.19 Proposition:

(i) Let S : (Y, ν) � be a factor of T : (X, μ) � (i.e., S and T are measure-
preserving and there is a measure-preserving φ : X → Y with Φ ◦T =
S ◦ Φ.) Then hν(S) ≤ hμ(T).

(ii) If A is invariant for T with μ(A) > 0, then

hμ(T) = μ(A)hμA(T) + μ(X\A)hμX\A
(T),

where μA and μX\A are the conditional measures on A and X\A, re-
spectively.

Proof:

(i) For any measurable partition Q of Y

Φ−1Q =
{

Φ−1(D) | D ∈ Q
}

is a measurable partition of X and, since Φ is measure-preserving,

Hμ(R−1Q) = Hν(Q), hμ(T,R−1Q) = hν(S,Q).

Thus,

hμ(T) = sup
P

hμ(T,P) ≥ sup
Q

hμ(T, Φ−1Q) = sup
Q

hν(S,Q) = hν(S).

(ii) Let P be a measurable partition of X and define the partition Q by
Q := {A, X\A}. We may replace P by P ∨Q (since we are interested
in supP h(T,P)). Hence, P ≥ Q and T−j(A) ⊂ A. Thus,

H(Pn) = − ∑
D∈Pn

μ(D) log μ(D)
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= − ∑
D∈Pn
D⊂A

μ(D) log μ(D) + ∑
D∈Pn

D⊂X\A

μ(D) log μ(D)

= −μ(A) ∑
D∈Pn
D⊂A

μA(D) log μA(D)

− μ(X\A) ∑
D∈Pn

D⊂X\A

μX\A(D) log μX\A(D)

− [μ(A) log(A) + μ(X\A) log μ(X\A)]

= μ(A)HμA(Pn) + μ(X\A)HμX\A(Pn)

− [μ(A) log(A) + μ(X\A) log μ(X\A)] .

Multiplying both sides by 1
n and letting n go to infinity, yields the

assertion.

�

5.4 Examples of Calculation of Entropy

One will expect that the rotation R : [0, 1) �, x �→ x + α (mod 1), has en-
tropy zero. The easiest way to see this, is to take the family

P̂ =
{
P (N) : N ∈ N

}
of partitions into N equal intervals. This family is sufficient by Proposition
5.16. The joint partition

(
P (N)

)
n
=

n−1∨
i=0

R−iP (N)

has not more than Nn elements (exactly that many for α irrational.) Hence,
by Lemma 5.1

H

(
n−1∨
i=0

R−iPn

)
≤ log Nn = log N + log n.

Thus,

h
(

R,P (n)
)
≤ lim

n→∞

1
n
(log N + log n) = 0.

Analogously one shows that the entropy for the rotation on the 2-torus is
zero.

Now: Entropy of Shift Transformations: A = {1, 2, . . . , k}, X = ∏∞
1 A

(sequences of symbols), T : X �, (x1, x2, . . .) �→ (x2, x3, . . .). The standard
partition of X is P0, given by

[si] = {(x1, x2, . . .) | x1 = si} , si = i, i = 1, . . . , k.
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Then T−1[si] = {(x1, x2, . . .) | x2 = si}. Hence,

Pn = P0 ∨ T−1P0 ∨ · · · ∨ T−(n−1)P0

consists of all cylinder sets of the form

[s1, . . . , sn] = {x ∈ X | x1 = s1, x2 = s2, . . . , xn = sn}
for sj ∈ A. Suppose the symbol si has probability pi > 0, ∑k

i=1 pi = 1.
Define

μ
(
[s1, . . . , sn]

t+n−1
t

)
= p1 · · · pn.

This Bernoulli measure is shift-invariant. What is the entropy of this mea-
sure?

hμ(T) = sup
P

H(T,P) = sup
P

lim
n→∞

H(Pn).

Claim: The standard partition is generating.

Proof: See Exercise 1 on sheet 10. �

5.20 Theorem: The entropy of the (p1, . . . , pk)-Bernoulli Shift is given by

h(T) = −
k

∑
i=1

pi log pi.

Proof: We have to compute the entropy

H (P0,n) = H
(
P0 ∨ T−1P0 ∨ · · · ∨ T−(n−1)P0

)
.

The partitions T−iP0 and T−jP0 with i �= j are independent. Hence, Propo-
sition 5.9 (ii) and 5.10 (i) imply

H(P0,n) = H(P0) + H(T−1P0)︸ ︷︷ ︸
=H(P0)

+ · · ·+ H(T−(n−1)P0)︸ ︷︷ ︸
=H(P0)

= nH(P0),

since H(T−1P0) = H(P0) by invariance of μ. Now

H(P0) = − logk
i=1 μ([si]) log μ([si]) = − logk

i=1 pi log pi

and hence,

hμ(T) = lim
n→∞

1
n

H(P0,n)︸ ︷︷ ︸
nH(P0)

= H(P0) = −
k

∑
i=1

pi log pi.

�
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Next we compute the entropy of Markov shifts. Let P be a stochastic matrix
(pij ≥ 0, ∑j pij = 1). Assume that P is irreducible, i.e., for all (i, j) there is
n ∈ N such that (Pm)ij > 0. Then Perron-Frobenius implies the existence
of a left eigenvector π for the eigenvalue 1 with πi > 0 for i = 1, . . . , k.
Define a Markov measure μ on the cylinder sets by

μ
(
[s1, . . . , sn]

t+n−1
t

)
= πs1 ps1s2 · · · psn−1sn .

5.21 Theorem: The entropy of the Markov shift, given by the matrix P, is

h(T) = −
k

∑
i,j=1

πi pij log pij.

Proof: The standard partition P0 again is a generator. An element of P0,n+1
is given by [s0, . . . , sn]. It has measure

μ ([s0, . . . , sn]) = πs0 ps0s1 · · · psn−1sn .

In the following we use the abbreviation φ(x) = x log x. We obtain

H(Pn+1) = −
k

∑
s0,...,sn=1

μ ([s0, . . . , sn]) log μ ([s0, . . . , sn])

= − ∑
s0,...,sn

πs0 ps0s1 · · ·
(
psn−1sn log

(
πs0 ps0s1 · · · psn−2sn−1

)
+ psn−1sn log psn−1sn

)
= − ∑

s0,...,sn−1

(
∑
sn

psn−1sn

)
︸ ︷︷ ︸

=1

φ (πs0 ps0s1 · · · psn−2sn−1)

− ∑
sn−1,sn

(
∑

s0,...,sn−2

πs0 ps0s1 · · · psn−2sn−1

)
φ (psn−1sn) .

We have
∑

s0,...,sn−2

πs0 ps0s1 · · · psn−2sn−1 = πsn−1,

since this is the probability to go from some symbol s0 over some sequence
of symbols in (n − 1) steps to the symbol sn−1. Hence,

H(Pn+1) = − ∑
s0,...,sn−1

φ (πs0 ps0s1 · · · psn−2sn−1)︸ ︷︷ ︸
=H(Pn)

− ∑
sn−1,sn

πsn−1φ (psn−1sn) .

By induction we obtain

H(Pn+1) = H(P0)− n ∑
i,j

πiφ(pij) = −∑
i

πi log πi − n ∑
i,j

πi pij log pij.

This implies the assertion. �
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5.22 Remark: The ( 1
2 , 1

2)-Bernoulli Shift (shift on 2 symbols) with p0 =

p1 = 1
2 is isomorphic to the doubling map Tx = 2x (mod 1) on [0, 1). En-

tropy is invariant under isomorphisms. Hence, the entropy of the doubling
map is

h(T) = −
2

∑
i=1

pi log pi = − 1
2 log 1

2 − 1
2 log 1

2 = log 2.

5.23 Remark: The main result, which started interest in entropy is due to
Ornstein (1970). He could show: If two Bernoulli Shifts have the same
entropy, then they are isomorphic.
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