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1 Introduction

Literature: Geon Ho Choe, Computational Ergodic Theory, Springer 2005.
Origins: Statistical Mechanics, Boltzmann (1887), Birkhoff’s Ergodic Theo-
rem.

Let X be a set and assume that we can associate a probability measure to
subsets of X, u(A) € [0,1], A C X. Let T : X O with

u(A) = u(T71(A)) forall A C X.
(T preserves u, u is invariant under T.) Let N € IN.

N—o0

%#{ne{l,...,N}H”(x)EB}—>?

Birkhoff’s Ergodic Theorem: — u(B), if we cannot decompose X into two
subsets with positive probability measure which remain invariant under T
(Ergodic Hypothesis).

Example: Let X C IR. One can define probability measures using a density
p with respect to Lebesgue measure:

n(A) = [ p(oax

if o(x) > 0and [, p(x)dx = 1. T leaves y invariant if

d =/ dx forall A C X.
/Ap(x) X T71(A)p(x) x forall A C

Let X = [0,1], T(x) = 4x(1 — x) (logistic map). Then the invariant density

Is
1

p(x) = P m

Thus, for A C [0,1]
dx

dx
/A T/X(1—x) /Tl(A) T/X(1—x)
2 Invariant Measures

2.1 co-Algebras and Probability Measures

In the following, X is a nonvoid set. A c-algebra on X is a family A of
subsets of X with
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Figure 1: Graph of p, p(x) = [m/x(l - x)} 71.

(i) @, X € A,
(i) A e Aimplies X\A € A,
(iii) An € A, neN,implies Uyen An € A.
A measure isamap u : A — [0,00] = [0,00) U {oo} with
() u(@) =0,
(i) Ap € A(n e N)with AN Ay, =@ forn # mimplies

" ( U An) = 3 u(Aa).
neN n=1

If u(X) = 1, then yu is called a probability measure.

2.1 Examples:
(i) Counting measure:

u(A) :=#A (number of elements in A).

(ii) Dirac measure:
1 forx e A,

Ox(A) = { 0 forx & A



A pair (X, A) is called a measurable space. A triple (X, A, u) is called a mea-
sure space. A measure space is complete if

AcA u(A)=0andNC A = Nec Aand u(N)=0.

Fact: Every measure space can be extended to a complete measure space.
An n-dimensional rectangle in R" is a set of the form

R = [a1,b1] X -+ x [an, bp]

with a; < bj fori = 1,...,n (also open and half-open intervals are allowed).
Let R be the set of all rectangles and define

U R — [0, OO], ‘u(R) = H(b, — ai).

We can extend u to a measure on the smallest o-algebra containing R. The
corresponding complete measure is the familiar Lebesgue measure.

f 1 (X, A) — R is called measurable if f~1(1) € A for every open interval
I C R. A characteristic function s : X — R is a function defined by

5(x) = 1 forxeE
10 forxZE

for some E € A. We also write s = 1g. A simple functions : X — R is a
function of the form

with aj € R, n € IN, and characteristic functions s;. Every simple function
is measurable, as can easily be shown.

Let f be a measurable function with f(x) > 0 for all x € X. Then there
exists an increasing sequence (s,) of simple functions with s,(x) — f(x)
and sp11(x) > sp(x) forall x € X.

Idea of the proof: Let f be a measurable function. Define

Let X be a metric space. Then the smallest c-algebra containing all open
sets is called the Borel-g-algebra. The corresponding measurable sets are
called Borel measurable and the measurable functions f : X — R are called
Borel measurable functions. Every continuous function is Borel measurable.



2.2 Example: Let S = {0,1}. For every p € (0,1) define a probability
measure on A := P(S) by

up({0}) :=p, pp({1}) :=1—p.
Define -
X =]][s=8N
1
with elements x € X, X = (Xg, X2, X2, ...), where x; € {0,1}. Let
[@1,...,an] :={xeX|xj=gafori=1,...,n}

fora; € {0,1},i =1,...,n. These sets are called cylinder sets. Let R be the
set of all cylinder sets. Define up : R — [0,1] by

up([ag, ... an]) = p*(1 —p)",

where K is the number of zeros in (a, ..., an). Then p, can be extended to
a probability measure on the o-algebra generated by the cylinder sets.

Recall that every element (by, by, b3, ...) of X represents a real number x €
[0,1] via

X = i bi2_i.
i=1

This representation is unique if we exclude tails only consisting of ones.
Then up can be considered as a measure on [0,1]. For p = 3 this is the
Lebesgue measure. In order to show this, note that

[al,...,an]z{xe[o,l] ; x:iaib—wr i b2~ bie{o,l}}.

i=n+1

This set has Lebesgue measure

]/l([a]_, . .,an]) =u ({2—(n+1)

=t

b2~ i b € {0,1}}> =u([0,27"])) =27".

i=0

On the other hand,
k —k _
tis2([az, ..., an]) = (%) (1 _ %)n —on
tp is called the Bernoulli measure, see also Halmos [2, Sec. 3.8]. O

A measure u is called continuous if #({a}) = 0 forall a € X[

1Sometimes a measure with this property is also called nonatomic. An example for a
measure which is not continuous is the Dirac measure Jy.



2.3 Proposition: The Bernoulli measures j,, p € (0,1), are continuous.

Proof: For a = (aj,az,as,...) € X we have

g vn
]/lp({a}) = Hp ﬂ[aly---,an] Syp([al,...,an])
n=1
= p(1-p)" " <p =0,
where k,, is the number of zeros in (a;,...,ay). The latter holds, since we

have excluded tails consisting of ones. This implies yp({a}) = 0. O

Let p(x) be a property whose validity depends on x € X. We say that p
holds for p-almost all x € X if p(x) is true for all x € X\ N where u(N) = 0.

Integration with respect to a measure p: Let E € A. Then 1¢ is integrable,
if u(E) < co and we define

/x LTedp := u(E).

Lets = )I'; ailg, be a simple function with pu(Ej) < oo fori = 1,...,n.

Then we define .
sdu = E / 1gdu.
/x . i:1zx, x ook

We call f : X — R with f(x) > 0 for all x € X Lebesgue-integrable with
respect to y, if there is an increasing sequence of simple functions s, such
that

sn(x) — f(x) for p-almost all x € X

and we define
/fdy = lim [ sndx,
X

n—oo Jx

provided the limit is finite. For a general f : X — IR decompose f =
ft — £~ with

f*(x) := max{0, f(x)}, f~(x):=max{0,—f(x)}

/fdy ::/ f+dy—/ fdu,
X X X

provided both integrals are finite. Similarly, if f : X — C, decompose f in
real and imaginary parts.

and define

Recall the following properties of the integral:
(i) Monotone convergence:

 im, oy = Jim [t
if (fn) is monotone increasing or decreasing (almost everywhere).
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(i) Fatou’s Lemma:

liminf fody < liminf [ fodp
X

X N—oo n—oo

(iii) Lebesgue’s Theorem on dominated convergence.

The LP-spaces LP(X,R,u) and LP(X,C,u) for p € [1,00) are the Banach
spaces of measurable functions f : X — R (f : X — C) such that the
integral over |f|P exists. The norm is defined by?

1/p
111 = ([ I11178n)
X

2.2 Invariant Measures

2.4 Definition: Let (X1, Az, p1) and (X2, Az, y2) be measure spacesand T :
Xy — Xy measurable, i.e., T~1(E) € A, forall E € A;. Themap T is called
measure preserving if

12(E) = w1 (TY(E)) forall E € A,.

If Xy = Xz, A1 = Az and u; = pp =: u, then we call T a transformation,
and y is called T-invariant.

2.5 Theorem: Let (X, A, 1) be a measure space and T : X 9 a measurable
map. Then the following are equivalent:

(i) T is a transformation.

(it) For all functions f which are integrable with respect to u we have

/fdy:/ f o Td.
X X

(iii) Define a linear operator Ut on LP(X,C, u) for p € [1,00) by
Urf:=foT forall f € LP(X,C,pu).
Then U+ is norm-preserving, i.e.,
| fllp = [|Ucflp forall f € LP(X,C,pu).

Proof: “(ii) = (i)”: Let f = 1g. Then

(i) _
p(E) = [ teon @ [ teoTdu= [ 1rgdu = u(TH(E).

2 ctually the elements of the LP-spaces are equivalence classes of functions, whereby
two functions are considered to be equivalent if they coincide almost everywhere.




“(i) = (ii)”: We can write f € LY(X,C,u) as f = f; — f, +i(f3 — f4) with
fi > 0. Hence, it suffices to prove (ii) for f > 0. As above, for f = 1

0
/fdﬂ—ﬂ()—ﬂ /ﬂT
:/XllEony:/Xfony.

By linearity of the integral this is also true for simple functions. By our
construction every f € L1(X,C, u) with f > 0 can be approximated by an
increasing sequence of simple functions s,: sp(x) — f(x) for all x € X.
Then also s,(T(x)) — f(T(x)) for all x € X and s, o T are also simple
functions, and the sequence is monotone increasing. Thus, by monotone
convergence

n—o0

/)(fony:r!Lrgo/ $p 0 Tdy = lim sndy:/xfdy.
“(i) & (iii)”: This is proved similarly as the equivalence of (i) and (ii).
O

2.3 Examples

2.6 Example: Let X = [0,1) and T(x) = x + 6 (mod 1), where 6 € [0,1).
Then the Lebesgue measure is invariant under T. Suppose 6 = - € Q.
Then

©ol|lo

T9(x) = x4+ 9O (mod 1) = x + p (mod 1) = x.

Hence, every point is periodic. So the interesting case is when 6 is irra-
tional O

2.7 Example: Let X = [0,1) and T(x) = 2x (mod 1). The preimage of an
interval E consists of two intervals, each of them with half the length of E.
Again, the Lebesgue measure (i.e., the length of intervals) is an invariant
measure. O

2.8 Example: Let X =[0,1) and

< 1
T(x) = 2x (mod 1) for?_x<2,
4x (mod 1) for; < x <1
Again, the Lebesgue measure is invariant. O

3Note that for rational 6 the Lebesgue measure is not the only invariant measure. Indeed,
there is an infinite number of invariant measures.
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Figure 2: T(x) = 2x (mod 1), see Ex.[2Z7
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Figure 3: T from Ex.[2.8
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Figure 4: T(x) = 4x(1 — x), see Ex.

2.9 Example: (The logistic map with parameter 4)
Let X = [0,1) and T(x) = 4x(1 — x). We claim that there is an invariant
measure p with density

1

p(x) = m

with respect to Lebesgue measure, and u is a probability measure. We have
to show that

Proof: Use the MAPLE program logisticsl1. O

2.10 Example: (p-transformation)
Let B := 3(v/5+ 1). This is a solution of

0=p8—-B—-1,
1

or equivalently, g — 1 = 5 Hence, § is the golden section. Define X =
[0,1). Then the transformation is given by

T(x) = px (mod 1).

11



There is an invariant measure p with a density with respect to Lebesgue
measure, given by

1+£2 ﬁ!

for 1 < x.

B foro<x <1
p(X): B
1+p2 B

2.11 Example: (The GauB-Transformation)
Let X = [0,1) and define

1
| $(mod1l) for0<x<1,
T(x) = { " 0 forx=0.

[GRAPH]

Gaul? (1812, in a letter to Laplace): There is an invariant probability mea-
sure with a density with respect to Lebesgue measure, given by

For the proof it suffices to show that
d
(I) fT x+1 f(O,a) x—-i)-(l’

14
(“) f x—i(l
Statement (ii) is proved by

X+1 ~——

For the proof of (i) note that T~1((0, a)) is the disjoint union of the intervals

(735, %], n € N, since for x € [0,1) we have

1(modl) € (0,a) & IneN: ie(nn+a)

& dneN: xe(n+a 1.

12



This implies
dx N & dx N
lim / = lim ) [In(x +1
/l'l((O,a))X—i-l ) 1 x+1 N n;l[ ( N

n+a
N
1
lim E [m (n—i—l) —In (ﬂ)}
N—roo &= n n+a

im [IN(N+1) —In(N+a+1)+In(1+a)]
—00

Sl

. N+a+1
= am {— In <W) +in(l+ aﬂ
a dx
— In(1+a) = .
n(l+a) /0X+1

O

2.12 Example: Let X = Rand T(x) = x — 1. Then T preserves Lebesgue
measure, i.e., [~ f(x)dx = [T f(x—L)dx forall f € LY(R,C, p).
In order to show that, lety € R. Then the preimage of y is given by

y:X—%=$©x2—xy—1:0@x=%i%\/m.
Thus, T~! of an interval (a,b) is the union of the two intervals
(3a—va+aib-viz+4), (Ya+Va+aib+Vb+a)).
The sum of their lengths is b — a, which proves the assertion. O

2.13 Example: Let X = R, T(x) = 3(x —1). Then T has an invariant
probability measure with density

1
S

with respect to Lebesgue measure. The preimage T ~((a,b)) is the union
of the two intervals

(m—v#+1m—\mﬂ+g,(a+v#+1m+\m1+g.

Now L g .
X
u((ab)) = ) A v (arctan(b) — arctan(a))
and
1 rb—vb2+1  gx

T @) == [

= 1(arctan(b — v/b? + 1) —arctan(a — /a2 + 1)

+ arctan(b + /b2 + 1) — arctan(a + v/a? + 1)).

13



By using the trigonometric identity

arctan (u +Vu?+ 1) + arctan (u —Vuz+ 1) = arctan(u)

we obtain
u(T~*((a,b))) = £ (arctan(b) — arctan(a)) .

Furthermore,

1 /° dx 1 .
= [ s = lim (arctan(x) — arctan(—x)) = 1.

7T X—o0

This transformation T comes from Newton’s method applied to f(x) =
1+ x%

f(x 14+x2 2x2—1—x2
o == gy =0 gt = B TR = ().
n n n

As a motivation for the following example consider again the map T(x) =
X+ 6 (mod 1) on X = [0,1). The interval [0,1) can be identified with S! =
{z € C| |z| = 1} via the map x + e¥™% [0,1) — S’. Addition modulo
one defines a group structure on S*, where the neutral element is 0 and
the inverse of x € [0,1) is given by —x + 1, since x + (—x + 1) (mod 1) =
1 (mod 1) = 0. Addition and inversion are continuous on S*.

2.14 Example: (Endomorphisms of compact groups)
A topological group G is a group which also is a topological space such that
the group operations are continuous, i.e., the maps

(91,92) — 0102, GxG — G,
g '_> gill G _> Gl

are continuous. We also require that G has the Hausdorff property: For
01,02 € G with g; # g; there are disjoint open sets A; and A, with g; € A;
and g2 € Az. An endomorphism of a topological group G is a map ¢ :
G — G which is a group homomorphism and continuous. We will use the
following

THEOREM: For a compact topological group G there is a unique measure y (on
the Borel-c-algebra of G) such that (G) = 1 and for all open sets A C G and all
xeG

H(A) = u(xA) @
where XA = {xa | a € A}

A measure with the property (D) is also called left invariant, and the unique
measure u of the theorem is called the Haar measure on G. An example for

14



Haar measure is Lebesgue measure on [0,1]/ ~ = S! = R/Z, where ~
is the equivalence relation which identifies 0 and 1 and every other point
only with itself. This space is an abelian compact group with the addition
modulo one.

CLAIM: A surjective endomorphism & of a compact topological group pre-
serves the Haar measure (Reference: Pedersen [3]).

Proof. Let i be the Haar measure. Define

v(E) == u(®7Y(E))

for all measurable sets E C G. Then v is a probability measure as can easily
be verified. We want to show that v = . Due to the theorem it suffices to
show that v is left invariant: Write an arbitrary element of G as ®(x). Then

y € D HD(X)A) & D(y) € P(x)A
s o(x)to(y) e A
e d(xty) e A

& xlyed (A

s yexd A,
Hence, @ 1(®(x)A) = xd~1(A). Thus,

V(@(x)A) E p(@ HD(X)A))) = u(xdL(A)) = u(d1(A) E v(A).

Since ®(x) is an arbitrary element of G, v is left invariant. O

2.15 Example: (The baker’s transformation)
Let X = [0,1] x [0,1] and

T(x) = (2x, 3y) foro<x <1 yelo1],
(2x—1,3(y+1)) fori<x<1, yel01].

This map preserves Lebesgue measure on the unit square. (Note that T is
not continuous. The first component can also be written as 2x (mod 1).) See
also the MAPLE program image_baker. O
2.16 Example: (Arnold’s Cat Map, a toral automorphism)

Let T2 = R2/Z2. Then the matrix A ;= ( i 1 ) defines a transformation

from T2 to T? by
T(x,y) = (2x+y (mod 1), x 4y (mod 1)).

Indeed: A defines a linear map L : R? O (x — AX). Since all entries of
A are integers, La maps Z? to Z?. Since detA = 1, A is invertible and

15



also A~1 has only integer entries. Hence, also L, 1 = L' maps Z? to Z2.
Therefore, A induces a bijective map T : T? O by

mola=Tom,

where 7t : R? — R?/7Z2 is the natural projection, mapping x to its equiva-
lence class x + Z?2. That is, the following diagram commutes.

R2 —A, R2

" |

TZT>T2

Let x = X'+ mwith m € Z2, ie, n(x) = n(x'). Then m(La(X)) =
T(La(X") 4+ La(m)) = m(La(X)), since Ly(m) € Z2. The same is true for
T~ This proves that T is well-defined. The invariant measure is the two-
dimensional Lebesgue measure. See the MAPLE program Image_Arnold.

O

2.17 Example: (The A-transformation)
Let X = [0,1]. For 0 < ¢ < 1 define the A-transformation

X for0 < x <cg,
+: forc<x<L1

The Lebesgue measure is invariant, since the preimage of an interval E is
the union of two intervals with total length equal to the length of E. %

2.18 Example: (The truncated A-transformation)
Let X = [0,1] and for § < a < 1 defineb := -1, Let

Ta(x) = L2x+a  for0<x<hb,
BV H(=x+1) forb<x <1

a

Then Ta(b) = 1, To(0) = a, Ta(1) = 0 and Ta(a) = a. The latter follows
from b < a which — by definition of b - is equivalent to (a — 1) > 0. We
have T, 1({a}) = {0,a}. Therefore, 6, is an invariant measure. There is a
more interesting invariant measure yu which has a density with respect to
Lebesgue measure. We have

Ta([0,a]) = [a,1] and T([a,1]) = [0, ],
T.*([0,a]) = [a,1] U {0},

16
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Figure 5: The Lambda Transformation from Ex.[2.17for ¢ = %
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Figure 6: The Truncated Lambda Transformation from Ex.[2.18/for a = %.
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Hence, if u is an invariant measure with a density with respect to Lebesgue
measure, then
u([0.a]) = u([a, 1] U{0}) = u([a, 1]) + p({0}) = p([a 1]).

—
=0

Since X = [0,1] = [0,a] U [a, 1], it holds that ;([0,a]) = 1 = u([a,1]). If uis
invariant under T,, then it is also invariant under T2, sinc

w(T2(E)) = u(TaH(E)) = p(E).

The restrictions of T2 to [0, a] and [a, 1] are well-defined with invariant mea-
sures 1dx and 1-dx, respectively. We obtain an invariant measure for T2
with density

1
7 for0 < x <a,

P(X):{ ﬁ fora< x <1

An easy calculation shows that this is also an invariant measure for T,.

O

2.4 Shift Transformations

Consider the set of symbols {1, ..., k}. Define the set

X::ﬁ{l,...,k}

1

of sequences with entries in {1,...,k} (k = 2: binary sequences). Let
P1,..., Pk = 0 with 2}‘21 p;j = 1. This defines a probability measure on
{1,...,k}. For t > 1 define a block or cylinder set of length n by

[a1, ..., an]t. t+n-1 = {(X1,X2,...) | Xt = a1, Xt+1 = @2,..., Xt4n—1 = an} .

p(lag,...,anlt,. t+n—1) := Pa,Pa,--- Pa, € [0,1],

We have

4For an arbitrary map T : X O, n € N, and A C X we define T""(A) = {x €
X | f1(x) € A}, i.e., the preimage of A under the n" iterate of T.

18



Then we can extend yu to the c-algebra generated by the cylinder sets and
get a probability measure. The natural map to consider on the set X is the
shift;

0:X O, (X1,X2,X2,...) — (X2,X3,...).

0 is called the Bernoulli shift and X is called the Bernoulli shift space. The
measure y is shift-invariant:

# (07 (an . anlt 1)) = p (a0 2, Bnltnen) = Pag o P

Analogous for X = [1%.{1,...,k}.
A stochastic k x k-matrix P = (pjj) is a matrix with entries p;; > 0 and

Y pij =1 Vi (the row sums are equal to one).
]
If P is a stochastic matrix, then P" (n € IN) is a stochastic matrix. In fact,

Y (P?)ij = ZZ PikPkj = ZZ PikPkj = Y_ Pik Y_ Py = 1.
i i k i

—
=1

Analogously this works for general n. Interpretation: pj; is the probability
to go fromito j. (P");j is the probability to go from i to j in n steps.

A stochastic matrix P is called irreducible if for all i, j there is m € IN with
(Pm)ij > 0.

Convention: We write vP for the product of a row vector v and a matrix P.

2.19 Lemma: Let P € R¥*K be irreducible. Then every eigenvectorw > 0
for a positive eigenvalue A satisfiesw; > 0 for all j.

Proof: Since w is an eigenvector, there is at least one component which is
positive, say w, > 0. For all j there is m € N with (P™),; > 0. Since

wP™ = AMw, we have
2_wi(P™)ij = AMw;
i

and
0< Wy, (Pm)m‘ < EWi(Pm)ij = )\ij = W > 0.
S~ N——
>0 >0
This proves the assertion. O

2.20 Theorem: Let P € R**k pe a stochastic matrix. Then the following
statements hold true:

(i) P has the eigenvalue 1.

19



(i)

There is a vector v > 0 (i.e., all entries of v are nonnegative) with
v#0andvP =v.

(iii) Let P be irreducible. Then there is a unique vector it = (7ty, ..., 7)

such that 7P = 7, YX_, mi = 1 and 7t; > 0.

Proof:

(i)

(i)

(iif)

Takeu = | : |.Then Pu = u. So P has the eigenvalue 1.
1

Define f(v) = vP for all v € R* and

K
S:= {ve]Rk tl=vi=Y v andvl,...,vkzo}.
i=1

Forv e S

£l = VPl = Y(vP) = Y Y vipy = Yvi Y opiy = L

J ] i j
N~
=1
Hence, f defines a map, again denoted by f, which maps S into S.
The set S is compact and convex. Since f is continuous, we can ap-
ply Brouwer’s fixed point theorem and conclude that there is a fixed
pointof f,i.e,v= f(v) =vP,veS.

Let 7t be a fixed point of the map f : S ©. Let v # 0 be an eigenvector
for A = 1. Consider for every t € R the vector 7t 4+ tv. This is an
eigenvector for A = 1. By Lemma all entries of 7t are positive.
Choose tg € R such that all entries are nonnegative, but at least one
component is equal to zero. By Lemma [2.19 this implies 7w + tov = 0
and hence v = %n. This shows uniqueness of 7.

O

The eigenvalue A = 1 is called the Frobenius-Perron eigenvalue and 7t the
Frobenius-Perron eigenvectorﬁ

Now let X = TT7°{1,...,k} and fix an irreducible stochastic k x k-matrix P.
Consider the Perron-Frobenius eigenvector 7w = (7tj) (7t > 0and ¥ 71j = 1,
P = 7). Define u by

U ([al, e ,an]t ..... t+nfl) = TTa, Paja, Payas * - Pay_jan-

This generates a shift-invariant probability measure on X, again denoted
by u. This is called a Markov measure and X is called the Markov shift space.

51t can also be shown that the generalized eigenspace for A = 1 is one-dimensional.
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Suppose
p1j = pjj forall i, j.

Then we get back a Bernoulli shift. (p; = pyj, j =1,...,k).

2.5 Isomorphic Transformations

Recall from Linear Algebra: Two matrices A, B € R"*" are similar if A =
S~1BS for some S € Gl(n,R), or equivalently SA = BS:

RN —2 , Rn

s| E
R" — R"

What is the appropriate definition of similarity for measure preserving
transformations?

2.21 Definition:

(i) Let (Xq,p1) and (X2, u2) be measure spaces. A map ® : X; — X
is said to be almost everywhere bijective, if there are E; C X; and
E, C X, with ,ul(El) = ]/lg(Eg) = 0 such that

@[y, \g : X1\E1 = X2\E2
is bijective.
(i) (X1, u1) and (X, u2) are called isomorphic with isomorphism @, if

is an almost everywhere bijective map with ®, ®~! measurable and
measure preserving.

2.22 Example: The spaces [13°{0,1} with (3, 3)-Bernoulli measure and
[0,1] with Lebesgue measure are isomorphic. See Exercise 2 on Sheet 2.

O

2.23 Definition: Let Ty on (Xy, #1) and T, on (X2, u2) be measure preserv-
ing. They are called isomorphic or conjugate, if there is an isomorphism
D : (Xq, 41) — (X2, u2) such that the following diagram commutes.

(X1, p11) —2 (X, pua)

o |

(Xo,42) —— (X, p2)

2

Note: Here we assume that T1(X1\E1) C Xi\E1 and T2(X2\E2) C X2\E2
for the null sets E1 and E, outside of which & is bijective.
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2.24 Remarks:
(i) Conjugation is an equivalence relation.

(ii) If @ is only measure preserving, then @ is called a semi-conjugacy,
T, is called a factor of T1, and T; is called an extension of Ts.

(iii) Analogous definitions can be given in a topological setting, where
X1, X, are topological spaces and Ty, T, are continuous. Then it is
required that @ is a homeomorphism with ® o T; = T, o ® (topological
conjugacy).

2.25 Example: The measure spaces X; := []°{0,1} with (3, 3)-Bernoulli
measure 1 and X; := [0, 1] with Lebesgue measure dx are isomorphic via

D (X1, X2, X2,...) = 2 Xn2 "

Let Ty : X1 O be the shift

Ti((X2, X2, X3, ...)) = (X2, X3, . ..)

and T, : Xy O the map
T2(x) = 2x (mod 1).

Then ® o T; = T, o @, which is proven by

T, (Z xn2‘”> = X1+ Z Xp2 N1 (mod 1)
n=1 n=2

N————
<1

_ ianZ D%, s, .. .) = D(T1 (X0, %r-..)).

2.26 Example: Let X = [0,1] and T(x) = 4x(1 — x) (logistic map) and

A(x):{ 2X for x € [0, 3],

2—2x forxe (3,1]. (tent map)

A preserves Lebesgue measure and T preserves du = p(x)dx with density

— 1 i
p(X) = Tl Define

®(x) := sin? (Zx) = 1 (1 — cos(7x)).

Clearly, ® is bijective and @ : (X, dx) — (X, u) is measure preserving: The
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Figure 7: Graph of @ from Ex.[2.26}

length (= Lebesgue measure) of ®~1([0,®(a)]) equals the length of [0, a
which equals a and

sin?(Za) .
1([0,9(a)]) = /0 o(x)dx 2 a

Both sides of the equality (x) coincide, since they coincide for a = 0 and
their derivatives coincide: The derivative of the right-hand side obviously
equals 1. For the left-hand side the chain rule gives

E/Sinz(%@ i _ __ 2sin(za)cos(7a)7
Rl I Ga s (7))
_ _sin(3a)cos(5a) _ sin(za)cos(za) _
[ (Fajcost(za)  SIn(Fe)cos(F

It remains to show that ® conjugates T and A. For T o & we obtain
T(®(x)) = 4sin*(Zx)(1 —sin?(Zx)) = 4sin®(£x) cos?(£x) = sin®(7x).

In the last equality we used the trigonometric identity 2sin(-)cos(:) =
sin(2-). For ® o A we get

P(A(X)) = sin®(ZA(x)) = sin®(Z2x) = sin?(7x)
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for x € [0, 3] and

D(A(x)) = sin*(ZA(x)) = sin*(Z(2 — 2x))
= sin®(r(1 — x)) = sin?(7t — 71x) = sin®(7x)

for x € (3,1]. O

2.27 Example: Let X = [0, 1] and consider S(x) = 2x (mod 1) and T(x) =
_ - dx
4x(1—X). (S preserves Lebesgue measure and T preserves dy = nm.)

Define ¥ : (X,dx) — (X,du) by
¥ (x) = sin®(mx).

For almost all x ¥ is two-to-one, hence not an isomorphism. So it can
only be a semi-conjugacy. ¥ is surjective and it is measure-preserving: The
length of ¥~1([0, ¥(a)]) is 2a. We have to show that it equals

sin?(ra
/0 )P(X>dx = ([0, yp(a)]).

This is proven with the same arguments as in the preceding example. It is
left to show that the conjugation property holds:

T(¥(x)) = 4sin?(mx) (1 — sin?(71x)) = sin®(2rx) = ¥(S(x)),
since for x € [0, 3] we have ¥(S(x)) = sin?(27x) and for x € (3, 1]

Y(S(x)) = sin®(r(2x — 1)) = sin®(27tx — 71)
= (—sin(27x))? = sin?(27x).

O

2.28 Example: Consider again S(x) = 2x (mod 1) on [0 1), identified with
the unit circle, with Lebesgue measure and T(x) = 3(x — %) on R with

invariant measure (1+ 2y It can be shown that they are conjugate via

d(x) = — cot(mx).

2.6 Coding Maps

Idea: Use Shift Transformations to describe transformations.
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2.29 Definition: Let T be measure preserving on a probability space
(X, ). A partition P = {Eq, Es,...,Ex} is called generating if the subsets
of the form

E,NT HE,)N---nT-"Y(E), ije{0,1,...,k},
generate the o-algebra of X.

Example: Consider a partition {Eo, E; } of [0, 1] into subintervals and look
at

Eo,E1, EoN T }(E), Eo N T H(EL),ExNT 1(Ep), Ey N T (Ey),...

Then the smallest o-algebra containing all these sets should be the Borel-c-
algebra. In the following: P = {Eo, E; }.

LetY =T11°{0,1} and let X : Y O be the shift
Y (ig, i, 0, . ..) > (g, i3,ig,...).
For x € X define the coding map ® : X — Y by
D(x) = (iy, g, i3z, .. .),

where T""1(x) € E;_ foralln > 1. Thus, iy is uniquely determined by x and
T. The coding map is almost everywhere injective, if (what we assume)

ﬁ T ()

n=1

contains at most one element x with u-probability one. Next we define a
probability measure on Y: Let [iy, ..., iy denote a cylinder setin Y, i.e.,

[il,...,in]:{(yl,yz,...)EY‘yk:ik, 1§k§n}

Then
d (Eil N Til(Eiz) A---N T*(”*l)(Ein)> = [ig,...,0n).

Define v onY by
v([ig, ... in]) = p (Eil NTYE,) N ﬁT‘(”‘l)(Ein)) .
Then & : X — Y is measure preserving and

DPoT =%Xo0d.
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Note that only those cylinder sets get positive measure whose preimage
have positive y-measure. Hence, ® is an isomorphism. How can one visu-
alize ® and the measure v?

(X, ) —— (X, 1)

0,1] ——[0,1]

We use that we can get from Y = []{°{0,1} to [0, 1] via binary expansion:
Define v : Y — [0,1] by (]i1,i2,...]) = Ya—1in2 " and a measure vy on
cylinder sets

vo(y(fig, - .., in]) i=v([iz,...,in)).
Then, with S(x) = 2x (mod 1) on [0, 1), we have

yoXi=So7.
We can visualize 1 (and hence p) using “many points”.

2.30 Example: X = [0,1], T(x) = 2x(mod 1). P = {Eo, E1} with E; =
0,3), E1 = [3,1]. Then ®(x) = (by, by, bs,...) for x = Y521 b27", by €
{0,1}. Then yo¢ = id, and vy is Lebesgue measure (i.e., the invariant
measure for T). The proof is left as an exercise. O

2.31 Example: Take X = [0,1] x [0, 1] and (Baker)

L[ (2% ly) for x € [0, 1),
T(x) = { (2x—21, ly+1i) forxe [%,i].

Take P = {Eo, E1} with Eg = [0, 1) x [0,1] and E; = [3,1] x [0,1].
FIGURE

LetY = 1%, {0,1} be the two-sided (3, 3)-Bernoulli shift space and % the
shift transformation. Define & : X — Y by

CD(X) = ( - ifl, io, il, i2, .. .),
where T"(x) € E; . Equivalently, for (a,b) € [0, 1] x [0, 1] with

a= iajz—i, b= ibjz—i,
j=0 j=0

d(x) =P((a,b)) = (...,b_p,b_1,a0,a1,a2,...).
Thus, ® is an isomorphism. O
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2.32 Example: (Coding map for the logistic map)
Let T(x) = 4x(1—x) on X = [0,1]. LetEy = [0,3), E; = [3,1]. Binary
sequence (by): T"(x) € By, (& x € T-("U(E, ). O

3 Birkhoff’s Ergodic Theorem

Aim: Let u be an invariant measure for T : X O and f : X — R. We want
to compare [ fdu and the average value of f along a trajectory f(T"(x)).

Birkhoff (1931): Ergodicity necessary.

3.1 Ergodicity
The following definition is fundamental for the whole theory.

3.1 Definition: Let (X,.A,u) be a probability space and T : X O a u-
preserving map, i.e., u(T~X(E)) = u(E) forall E € A. Then T is called
ergodic if for E € A one has

u((THENE)U(B\TY(E))) =0 = pu(E) =0orpu(E) =1

For a better understanding of this property it is useful to introduce the fol-
lowing convention: Two sets are said to be equal if they only differ by null
sets, formally:

A=B if y(A_\BUB\é) =0.

—AAB
In these terms: T is ergodic if

TYE)=E = E=QorE=X.
We also call the measure u ergodic (with respectto T).

3.2 Definition: If, for a transformation T on (X, A, i), there are disjoint
measurable E; with u(E;) > 0,

X = UEJ-, T(Ej) C Ej,
j

such that T|g, : Ej — Ej is ergodic with respect to the conditional measure
1g;, then such E; is called an ergodic component of T.

The following observation will be useful for a measure u. Let E € A with
#(E) > 0. Then

. n(ANE)
HelA) ="l
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defines a measure, called the conditional measure. If u is a probability
measure, then also g is a probability measure. Furthermore, we also may
consider yg as a measure on E.

3.3 Theorem: Let T be a transformation on (X, it). Then the following are
equivalent:

(i) T isergodic.
(ii) Ifu(A) >0, then U2, T "(A) = X.
(iii) Ifu(A) >0andu(B) >0, then u(T-"(A)NB) > 0 for somen > 1.

(iv) If a measurable function f : X — C satisfies f(T(x)) = f(x) for
almost every x € X, then f is constant almost everywhere.

Proof: “(i) = (ii)”: Put E := Uy, T-"(A) for u(A) > 0. Then T"}(E) =
Une, T-"(A) C Eand

H(EATTHE)) = p(E\TH(E)) = u(E) — p(T(E)) =0

by invariance of . Hence, E = T*l(E). Since T is ergodic, E = @ or
E = X. Since E D T Y(A) and u(E) > u(T(A)) = u(A) > 0, we
conclude u(E) =1,i.e, E=X.

“(i) = (iii)” Let u(A),u(B) > 0. Since U, T"(A) = X, B =
Unz1(T""(A) N B), thereisn > 1 with u(T-"(A)NB) > 0.

“(iii) = (i)”: Suppose T"1(B) = B and u(B) > 0. Let A := X\B. Then
T "(A) = X\T"(B) = X\B. Hence, u(T""(A)NB) = 0foralln > 1.
Thus, by (iii), #(A) = 0 and hence u(B) = 1.

“(i) = (iv)”: Let f : X — C be measurable with f(T(x)) = f(x) for almost
all x. By considering real and imaginary parts separately, we may assume
that f is real-valued. Put, forn > 1,k € Z,

Eng = {x X 27 < f(x) < 2—”(k+1)}.
Then {E,k | k € Z} is a partition of X for every n. Note that

T Enk) = {x|27"k < F(T(x)) <27"(k+1)}
= {x|27"k < f(x) <27"(k+1)} = Eny.

Hence, by ergodicity, E,, x has measure 0 or 1. More precisely, for each n
there is a unique k, € Z such that

#(Enk,) = 1and p(Eni) = 0 for k # kn.

Let Xo := Nn1 Enk,- Then u(Xg) = 1 and f is constant on X. (Since all
values are contained in an interval of length 27", n € IN).
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“(iv) = (i) Suppose T~1(E) = E. Then, with f(x) = 1g(x)

100 =100 = 1eT0) = { 5 700 £ vt 4(5) £

By (iv) 1g(x) is constant. Hence, either E = X or E = @. O

3.4 Example: Let X = [0,1], T(x) = x+ 6 (mod 1), where 6 € [0,1]. The
Lebesgue measure is invariant.

Assertion: The Lebesgue measure is ergodic for T iff 6 £ Q.
Proof: Letf € Q,i.e., 6 = ¢, p,q € N (w.l.o.g.). Define

f(x) ;= e, x € [0,1].
f is obviously not constant.

— p2miq(X+0) _ a27igx Q27Tip _ o27igX
f(T(x))=e e e\/l_/ e f(x).

Hence, by Theorem 3.3 (iv) T is not ergodic.

Now let & € R\Q. We show: Forall f € L?(X,C) with f(T(x)) = f(x) for
all x € X it follows that f is constant, which implies ergodicity. L?(X,C)
has an inner product, defined by

(1,9) = [ 107960

for f,g € L?(X,C). Fact: This is a Hilbert space. The norm is |f|, =
V/(f, f). The following set of elements in L2(X, C) is orthonormal:

fo(x) := €™ x € [0,1], n€ Z.
We compute

L i L 1 forn=m
_ 27TINX x277imx _ 2mi(Nn—m)X 4y '
<fn,fm>—/0e 27 dx_/oe dx_{0 forn £ m

The latter is true since for n # m

1. 1 _ 1 1
27i(N—m)X 4y — 2mi(n—m)x |~ _ _ —
/0 ¢ dx 2mi(n —m) [e ]o 27ti(n —m) (1-1)=0.

L2(X,C) is infinite-dimensional, but every element f € L?(X,C) can
uniquely be written as

f=1Y cnfy (Fourier Series)

nez
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with ¢, = (f, fn). {fn}nez is a complete ON-system (see also Bachman and
Narici [4, pp. 155-157]). Let f € L?(X,C). Then

f(x) =Y cne®™™™, x€[0,1] = X.

nez

We compute

f(X) — f(T(X)) — 2 Cne2nin(x+9) — Z Cne2nin9e2ninx_

nez nezZ

Since the ¢, are unique, it follows that
ch = cpe?™ foralln € Z.

If ¢y # 0, then e2™"% — 1, which implies n = 0, since 6 is irrational. Hence,
f(x) = cp, a constant. O

A generalization:

3.5 Theorem: Let F be a compact Abelian group with Haar measure u
(u(H) = u(gH) forH C G, g € G). Foreach g € G define

Tg:G O, Ty(x) =09%x, xe€G.
Then Ty is ergodic with respect to y iff
{g"Inez}
isdensein G.

Observe: G = IR/Z becomes a topological group under addition modulo
one. It is also compact and Abelian. The Haar measure is the Lebesgue
measure. A character of G is a homomorphism x : G — C\{0} such that

x(9)] = 1forallg € G (x(0102) = x(91)x(g2) forall g;,9, € G). The
characters form a complete ON-system in LZ(G,CA, ). In other words: For

each f € L?(G,C,u) there are unique numbers f(x), x a character, such
that A
f(x) =Y f(x)x(x),
X
where the sum runs over all characters.

3.6 Example: Let X = [0,1) and T(x) = 2x (mod 1). The Lebesgue mea-
sure is an invariant ergodic measure.

Proof: Let f € L2(X,C) be invariant, i.e.,

f(x) = f(T(x)) foralmostall x € [0,1).
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Then f(X) = Yhez Cn€¥™™, x € [0,1), and the coefficients are unique. Com-

pute
E Cne27tinX — f(X) = f(T(X)) - E Cne2ni(2n)x_

nez nezZ

Hence, ¢, = 0, if n is odd. Computation of f(T?(x)) = Y ez Cne?™ (4%
shows that all coefficients ¢, with n not a multiple of 4 are equal to zero.
Going on this way we find that all ¢, are equal to zero except possibly co.
Hence, f(x) is constant. O

3.7 Theorem: Consider T" = R"/Z", the n-dimensional torus. Define a
multiplication

(Y1, .-y¥Yn) - (21,...,2n) := (Y1 + 21 (MmOd 1),...,Yn + zn (Mod 1)).

This makes T" into a compact Abelian group. Let ® : T"  be a surjective
homomorphism given by

d(x) = Ax, AezZz"™".

Then & is ergodic with respect to Lebesgue measure iff no eigenvalue of A
is a root of unity.

2 1

3.8 Example: Let A = ( 11

) . The eigenvalues are given by

0:(Z—A)(l—A)—1:/\2—3/\+1<:>A1/2:%<3i\/§).

Hence, the eigenvalues are not roots of unity (A},A} # 1forall n € IN).

O

3.2 Birkhoff’s Ergodic Theorem

3.9 Theorem: Let (X, ) be a probability space. If T : X O preserves the
measure y and f : X — R is integrable, then

1 n—1
lim = Y f(T*x)) = £*(x)
0

n—oo N =

for all x € X and for some f* € LY(X,R, u) with
f*(T(x)) = f*(x) foralmostall x € X.

If T is ergodic, then f* is constant and

1
Y 1(T400) = [ fau

l n
lim —
k=0

n—oco N

for almost all x € X.
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Discussion: Let f = 1g, E C X measurable. Then
1 n—1

lim = Y 1g(T*(x))

n—o N k=0

counts how often T¥(x) visits E in average. If T is ergodic, then this limit
equals u(E) (“time average = average over space”).

Conversely: If E is a measurable invariant set, then 1g is an invariant func-
tion: 1g(x) = 1g(T(x)) for almost all x € X.

For the proof of Theorem [3.9we need the following lemma.

3.10 Lemma (Maximal Ergodic Theorem): Let T : X O be measure pre-
serving and consider f : X — IR integrable. Define fy = 0, f, =
f+foT+ -+ foT" 1 n> 1 and Fy(X) := maXo<n<n fn(X), X € X.
Then
/ fdu >0 forall N € IN.
{x: Fn(x)>0}

Proof: Observe that Fy € L(X,u) since f,f o T,... are integrable. For
0<n<N,Fy > f, and hence,
FnoT > froT
Thus,
FNoT+f>f+fhoT=f,, forn=0,1,...,N—1
This shows

Fa(T(X)) + f(x) > max fo(x) forall x € X.

~ 1<n<N

If Fn(X) > 0, then the right hand side equals maxo<p<n fn(X) = Fn(X). We
find
f(x) > Fn(x) — Fn(T(x)) on {x| Fny(X) > 0} =: An.

We compute

fd >/Fd—/F Tdy = 0.
/AN ]/[_ANNV ANNOy

The latter is true since T preserves . U

3.11 Corollary: Let T : X O be measure preserving. Ifg : X — R is
integrable and

n-1
B, 1= {xe X supl Y 9(T*(x)) >uc}, x €R,
0

n>1 n k=
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then
/B gdp > ap(By).

IfT-1(A) = A for some A C X (measurable), then
/ gdy > au(B, N A).
B.NA
Proof: The second assertion is immediate from the first one, if we apply it
to A instead of X. Apply the Maximal Ergodic Theorem to
=0 —a.
Then

B, = {x € X|Fny(x) >0}

0

TCe

and

/ fdu >0 forallN = [ fdu>o0.
{x: Fa(x)>0} By

Hence, me gdu — me ady >0, i.e.,

/B gdp > ap(By).

O
Proof of Birkhoff’s Ergodic Theorem:
Define
1 n—1
f*(x) == limsup = }_ f(T*(x)),
n—oo n k=0
P L=
f.(X) = |Imlol;1fﬁk§) f(T*(x)).
This implies

£(T00) = limsup 2 T 1(T4(x))
=0

n—oo n k=

= limsup (== L [F(T00) + -+ H(T7(x)]
— timoup T x4 F(T(0) 4+ F(T00)] =
ey
= “Tjoljp%l ni_f_lkgof(Tk(x)) = f*(x)
—1



We still have to show that f*(x) = f.(x) and they are integrable. Put
Eep = {xe X[ f(x)<panda < f*(x)}, «,f€Q.

We want to show that
X[ f(x) < £5(x)}

has measure 0. Then for «, 8 € Q

{x ] f.(x) < f*(x)} = |J Exp (countable union).

p<u
We find
T (Eup) = {x] f.(T(x)) < Band a < f*(T(x))}
= {x| f.(x) < pand a < f*(x)} = E,p.
Put

1 n-1
B, = {x csup= Y F(TH(x)) > zx}.

n>1 N o
ThenE, 3 C B,. By Corollary B.1]]

fdu = fdu > au(By NEyg) = ap(Ey ).
/Emﬁ [ - p > ap(By N Eqp) = ap(Ep)
Note that (—f)* = —f,, (—f). = —f*and

Evp = {X| (=) (x) > —Band —a > (—f).(x)}.
Replace f,«, g by —f, —B, —a. Then

/Eaﬁ(—f)du > —pu(Eap) = /Eﬁ fdp < Bu(Eap).
Ifa > 0, then u(E,p) = 0.

X[ .00 < ()} = JEup = p({x] f.(x) <7 (x)}) =0.
B<a
Hence,
f*(x) = lim = Z f(T*(x

n—oco N

Next we show: f* is integrable: Let



Then (since T leaves y invariant)

1n71
dn < = Y [ 1100 dn = [ [fldu < co.
Jonde <5 1 [ 11T 00 e = [ (1] < e

:fx |”dﬂ

Now (by Fatou’s Lemma)

Jo 10l = [ [f.ldu = [ timinfgsdp < liminf | gady

Hence, f* is integrable. It remains to show that

/dey:/xf*dy. @

Since u is ergodic and f*(T(x)) = f*(x), by Theorem 3.3 we get that f* is
constant almost everywhere. This implies

Frdp = £*(x) u(X :/fd.

ot = 100500, = |, e
=1

For the proof of (2) define for all n > 1 and k € Z the set

Dnyk::{X€X|%§f*(X><%}.

For fixed n, X is the disjoint union of the set D, \, k € Z. D,y is invariant,
since f*(x) = f*(T(x)) implies

T HDny) = {x € X|T(x) € Dpx} = Dni.
For ¢ > 0 small enough

1kt k
Dok CBx ,=¢xeX tsup= ) f(T'(x)) > = —¢p.
n n>1 NS n

By Corollary [3.1T]we obtain

/Dn,k fdu > (& —¢) u(Dpy) foralle > 0.

Thus,
[ fon = ku(Dn).
Dn,k

Together with the definition of D,  this yields

/D frdu < ¥2u(Dnk) = Lu(Dny) + fdu.
nk

Dn,k
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Summation over k yields

Frdp < 1 /fd foralln € N,
[ fran <+ [ o

For n tending to co we get the inequality

/f*dyg/ fdu.
X X

The same procedure for —f gives

—f*d</—fd :>/f*d>/fd.
/X( )fdu < X( )dp Fdu > | fdp
This finishes the proof. ]

3.12 Remarks:
e \We have shown:
fd :/f*d for all .
/X H . M M

Hence, by Lebesgue’s Theorem on Dominated Convergence we obtain
for f bounded:
=

n-1
LY 1T 00) - 00| dp
1 k=0

1 n—1
Hﬁ 5 H(T(0) - (0
k=0

i.e., convergence in LY(X, u).

e A stochastic interpretation of Birkhoff’s Ergodic Theorem: Let (Q), P)
be a probability space. A, B C Q) are called independent if P(ANB) =
P(A)P(B). Aj C O, i € N, are called independent if forall 1 < i; <

i < -+ <y

P(Ai,N---NA;) =P(A)P(A;,) - P(A;).
A sequence of integrable functions X4, Xp,...: QO — R is independent,
if

{x;l(Bi)}::, B, C R,

are independent for all {B;} in R.
The distribution of an integrable function X : O — R is

Px(A) := P(X7Y(A)), ACR.

The Strong Law of Large Numbers says: Let X1, X», ... be independent
integrable functions from ) to R with identical distribution Pyx. Let

the mean be [, xdPx(x). Then
1
FXa(@) + - 4 Xn(@)] = [ xdPx(x)

for P-almost all w € Q).
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3.13 Theorem: Let T : X O be u-preserving for a probability measure .
Then u is ergodic if and only if for all measurable A,B C X

n“j;ﬁ EP‘ NB) = u(A)u(B),
i.e., convergence in average.

Proof: “=": Take f := 1 5 in Birkhoff’s Theorem. Then

lim = leA )):/X]lAd.u:V(A)-

n—oo N

Thus,
n"ﬂ;anﬂA (T'(x)) 18 (x) = u(A)1s(x)

for almost all x € X. By Lebesgue’s Theorem on Dominated Convergence
(LDC) we get

p(A®) = | n(A)La(x)dy

LDC
Ly REGQIECLY

I (A)ms(x)

1 n—1 )
— Iim = —i
= r!grgo - kg&)y(T NB).

“<": Suppose that T~1(E) = E. Taking A = B = E we get

u(E) = lim = Z u(T NE) = u(E)%

n—oo N

Hence, u(E) = 0or u(E) = 1. O
The following theorem is stated without proof.

3.14 Theorem (The Mean Ergodic Theorem, von Neumann): Let (X, u)
be a measure space with X = |2, Xj with u(Xj) < oo (c-finite). Let T :
X O be measure-preserving for f € L2(X, u). Then there is a T-invariant
function f € L2(X, u) with

lim
n—oo

nZ]‘OTI 1_
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3.15 Theorem (Borel): Suppose T is continuous on a compact metric space
X, and let {T" }ncN be uniformly equicontinuous, i.e.,

Ve>0:36>0:VneN: VxyeX:d(x,y) <d=d(T"(x), T"(y)) <e.

If u is ergodic for T and u(U) > 0 for all nonempty open setsU C X, then
for all continuous f : X — R and every x € X

] 1n—1
lim = Of(T"(x)):/xfdy.

n—oo N k=

Proof: By Birkhoff’s Theorem the assertion is true for all x outside of N
with u(N) = 0. Since yu is positive on nonempty open sets, the interior of N
is empty, hence the assertion holds on a dense set Xy, C X. Letx € X and
e > 0. Since {T" },en is uniformly equicontinuous by assumption and f is
uniformly continuous, since X is compact, there is § > 0 such that

d(x,y) <& = sup|f(T(x)) - f(TX(y))| <e.
k>0

Choose a pointy € Xg such that d(x,y) < 4. Thenforalln >0

< |2 Y 1(TH) — £(TH(y)

n—1
k=0

SYHT0) - | o

k=0

n—1 ‘

<e
n—1

1
{2 X AT )~ [

k=0

n—oo
—— 0.

The second summand tends to zero, since y € Xg. Since ¢ is arbitrary, the
assertion holds. O

3.16 Theorem (Kronecker-Weyl): For an irrational number 6 € (0,1) we
have

lim Ecard{k €[0,njNZ|{kb} € 1} = length of I,

n—oco N

for each interval | C (0,1), where {-} denotes the fractional part of a real
number.

Proof: The map T(x) = x+ 6 (mod 1), T : [0,1) O, is ergodic with respect
to Lebesgue measure (see Exercise [3.4). We identify [0,1) with the (com-
pact) unit circle. The family (T"),en of iterates of T is uniformly equicon-
tinuous, since

IT"(X) =T (y)| = [(x+nB) — (y+nb)| = [x — Y]
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for all x,y € [0,1) and n € IN. Moreover, the Lebesgue measure has the
property that all nonempty open sets have positive measure. Hence, Theo-
rem 315 implies that

I|m—211| (T*(x)) = A(1)

n—oco N

forall x € [0,1) and all intervals | C [0,1). For x = 0 we have

nZ_llﬂl(T‘(O)) = nZ_;lm(ke (mod 1))
k=0 k=0

=card{ke€{0,1,...,n—1} | {k6} € I1}.
This implies the assertion. O

Question: When are Markov shifts ergodic?

Let P be a N x N-stochastic matrix, i.e., P = (pij): pij > 0, 3pij =1 for
all j (the row sums are 1). p;; is interpreted as the probability to go from i
toj. Then X = T[2;1{1,..., N} with the shift 6 : X O, 6(x1,%2,X3,...) =
(X2,X3,...). An invariant measure y is defined by its values on cylinder
sets, i.e., by u([a1,az,...,an))tt+1,. t+n-1. By Theorem (i) there is a
vector 77 = (my,...,7in) with 1 > 0, YN, r; = 1, such that 7P = 7. 7t is
unique, if P is irreducible, i.e., for all i, j there is m € IN with

(Pm)ij = p,T > 0.
The measure p of cylinder sets is then defined by
]/l([aly ag, ..., aN])t,t+1,...,t+nfl = TTa; Paja, Pasas - - - Pap_jan-

3.17 Theorem: A Markov shift is ergodic iff P is irreducible.

Proof: We only prove the backward direction “<”": First recall that p}‘l- =
(PX)jj is the probability of {i, = j | io = i}. Define

Ei:={xeX|x =i}, i=1,...,N.

Birkhoff’s Theorem implies that 1 Y"1 1 (6%(x)) exists for almost all x €
X and the limit is integrable. Hence, using dominated convergence, there
exist

1
Gy = [ |fim 1 (64(x)) - 1e,(x) | dp
- Sim LT (e Ene)

= E,r!'i‘on Zﬂ'pu = 'L”Jon Epu
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The matrix Q = (q;j) is stochastic, i.e., g;j > 0,

un = Zn"jgo - Z pij = r!'jgoﬁ ZZP.J =1

\,_/
=1

since P is stochastic. Furthermore QP = PQ = Q, since Q =
limy— 2 Y0~ PX, and Q? = Q. The latter follows from

Q- ) P=_) QP =
N0 N\ o~~~
=Q
by letting n tend to infinity.
Claim: If P is irreducible, then all entries g;; of Q are positive and all rows
of Q are identical and each row of Q equals 7.

Proof: Q = QP implies that for fixed i and j qi; = Y, q,kpkJ > q,kpn for all k
and n. Define
F = {j‘q” >0}.
Then
keFandpg >0 = jeF ©))
and F; # @, since some Qi is positive. By irreducibility there is an n with
p{(‘j > 0. Again, by irreducibility of P, (3) implies that i = {1,...,N}. All
rows of Q are identical: If not, there are jo, ko such that gj,x, < max; g, =: g.
Since Q% = Q we have for all i
Qik, = ZQij Qjke < qZQij =q.
i Y j

=q S~~~
=1

This is impossible. Next we show that for all i and j q;; = 7r;. Compute

n—1

1
(7Q); = Y ity = r!'ﬂ!oﬁ Z Zn.p., = lim = kzo(npk)j = ;.
1

The latter equality holds true since 7P = 7, (7Q); = LN, migij, and g is
independent of i. Hence,

N
(mQ)j = <Z‘i ﬂi) dij = dij,

=1

which implies g;; = 7; for all i and j.
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By Theorem [3.13 ergodicity of the Markov shift follows if

n—1
§ L HOE)NF) % uEn(F)

for all measurable sets E and F. It suffices to prove this property for cylin-
der sets E and F: Let

E = {x| Xr,..., %X11) = (io,i1,...,01)},
F={x|(Xs...,Xsxm) = (JorJ1,---»m)}"

for given symbols ig, i1, ..., ir, jo, j1,-- -, Jm € {1,..., N}. For k large enough
we have

{ror+1,...,r+1}+k)N{s,;s+1,....,.s+m} =Q.

Then

1 (07E) V) = 7oPips -+ Piy P (Pl ™Piy -+ Py i)

and
1 n—1 B 1 n—1 B
n k;)# (9 “(B)n F) = Tl Piojs "+ * Pln-sm Pioiy “ -+ * Pi s (ﬁ k;) pﬁi?)
—_——
—Uimip="Tig

The right hand side is

H(E)H(F) = 7Tig Pigiy * -+~ Pir_1it TTio Piojs * - * P
This finishes the proof. U
3.3 Absolutely Continuous and Singular Invariant Measures
3.18 Theorem: Let (X, i) be a probability space and let T : X O be a u-
preserving ergodic transformation. Suppose that p € LY(X,u) satisfies
p(x) > 0 for y-almost all x € X and [, pdy = 1. If T is also ergodic

with respect to the measure dv = pdu, then p(x) = 1 for almost all x € X.

Proof: Let E C X be measurable and let
C e 1E k
X, = {x € X : r!lﬂc]oﬁ kg;)]lE(T (x)) = y(E)},
C e 1E k
Xy = {x €X: r!'ﬂc]oﬁ kg)]lE(T (X)) :v(E)}
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Then by Birkhoff’s Ergodic Theorem
(X)) =1 and v(Xz) = 1.
By definition
1=v(Xy)= [ pdu.
X2

Hence, u(Xz2) > 0. Since (X1 N X2) = u(Xz) > 0 it follows that X; N X, #
@. Choose x € X1 N X,. Then

n—1
= li K(x)) = = [ pdpu.
u(E) = fim Y, 1e(T¥(x)) = v(E) = [ pcl

This holds for all E, hence p(x) = 1 u-almost everywhere. O

3.19 Example: (Solenoid)
Let St = {¢ | 0 < ¢ < 1} be the unit interval identified with the unit circle,
and let

D={(uv) € R?|u*4+v? <1}

be the unit disk. Observe that S with addition modulo 1 is a group. Con-
sider
X:=8'xD

identified with the solid torus in R3. For 0 < a < % define the solenoid map
T:XOby

T(¢,u,v) == (2¢,au + 3 cos(27me),av + 3 sin(27¢)) .
The image of T is contained in X, since

(au + L cos(279))’ + (av + L sin(27¢))? = a?(u2 + V)
<1
+ a(ucos(27¢) + vsin(27p)) + 1

<1

1
< a2+a+Z<1.

In fact T(x) C int(X). T is injective: Suppose T(¢1,u1,V1) = T(¢2, U2, V2).
Hence, 2¢1 = 2¢, (mod 1). If ¢1 = ¢», then au; = aup and av, = avy, hence
u; = up and vy = vy. Else 24)1 = 2(])2 + 1. Hence, 471 — 4)2 = ﬂ:%

au; + 3 cos(27py) = auy + 3 cos(27¢,)
= aup + 3 cos(27(¢1 £ 3)) = auy — 3 cos(2mgy).
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Analogously, avy + 3 sin(27t¢1) = av, — 3sin(2m¢y). Thus, a(up — up) =
—cos(27mt¢y) and a(vy — vz) = —sin(27t¢y). Thus,

8.2 [(Ul — U2)2 + (Vl — Vz)z] =1.
This is impossible, since a> < § and (u; — u2)? + (v; — v2)? < 1. We have
T(X) CintT"(x) ¥n > 0.

The solenoid is S := N, T"(X). S is nonempty, since it is the intersection
of a decreasing sequence of compact sets. Then T|s is bijective.

FIGURE

Question: Does there exist an invariant measure on S?

This question is answered by the following Theorem. O

3.20 Theorem (Krylov-Bogolyubov): LetT : X O be continuous on a com-
pact metric space X. Then there exists a T-invariant probability measure on
X (i.e., on the Borel-c-algebra of X).

Proof: The proof is based on the following facts from Functional Analy-
sis:

(i) LetL:C(X,R) — R be acontinuous linear operator with Lf > 0 if
f > 0. Then there exists a (unique) finite measure on X such that for

every f € C(X,R)
Lt :/ fy.
. M

(Riesz Representation Theorem).

(ii) Let pm(X) be the set of all probability measures on X and (u,) a
sequence in pm(X). Then there are u € pm(X) and a subsequence
(pn,) such that for every f € C(X,R)

k—o0
/deynk;/xfdy.

(Weak compactness of pm(X)).

(iii) If g : X — Cis integrable, then for every ¢ > 0 thereisaset N C X
with #(N) < eand a continuous function f : X — C such that g(x) =
f(x) forall x € X\N. (Lusin’s Theorem).

Fix n € N and x € X and define

Ln:C(X,R) = R, Lyf:= %nzlf(Tk(x)), f € C(X,R).
k=0
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Ly is linear and continuous with L,f > 0 for f > 0. By (i) there is a finite
measure pn, With

Lot :/ fdun forall f € C(X,R).
X

Since
p(X) = [ dp=Lal =1,
X

un is a probability measure. By (ii) there is a probability measure y and a
subsequence (jn, ) with

L, f :/ fdynk“—"?/ fdy forall f € C(X,R). @)
X X

It remains to show that u is T-invariant. Let f € C(X,R). Then for all
kelN

LS i) - 2 1 i < 2l
e JZO (o) - o ,Zo FTITO0))| < 11700 = F(T™(0)] < =0
)

This implies that for all e > 0 and k € IN large enough

fd—/de </fd—/fd
/X [ FoTdul < || fdu— | fdun,
+ /X fd‘unk - /X f o Td‘unk

+ /fonynk—/ fony‘.
X X

The first and third summand can be made smaller than £ by (4), and the
second summand by (B). This shows that [, fdu = [, f o Tdu forall f €
C(X,R). Let A C X be measurable. From (iii) we can conclude that

/X]lAdy:/X]lel(A)dy.

holds, which implies [, fdu = [, f o Tdu for all integrable f. By Theorem
[2.5]this proves that u is T-invariant. O

4 More on Ergodicity

4.1 Mixing

Recall Theorem An invariant measure is ergodic for T : X O iff for all
measurable A,B C X

1 n—1

lim ~ Z;)V(T_k(A) NB) = u(A)u(B).

n—oo N P
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4.1 Definition: A measure-preserving transformationT on (X, p) is called
mixing, if for all measurable sets A,B C X

lim u(T7"(A)NB) = u(A)u(B).

Clearly, mixing transformations are ergodic. Question: Is mixing stronger
than ergodicity?

We will show that T : [0,1) O, x — x + 6 (mod 1), € irrational, which we
know is ergodic, is not mixing.

Recall: p is T-invariant iff Ut f = f o T is norm-preserving on LZ(X,C, ",
ie, [y [fl2du = [y |f o T|?dy forall f € L?(X,C, u). The inner product on
L2(X,C, u) is given by

(1.9 = [, F()a00au(x).

4.2 Theorem: Let (X, u) be a probability space and T : X O u-preserving.
Then the following are equivalent:

(i) T is mixing.
(i) Forf e L?(X,C,u): limn_e(URF, f) = (f,1)(1, f).
(iiiy For f,g € L2(X,C, u): limp_e(UTf,g) = (f,1)(1,9).

Proof: “(i) = (ii)”: Write U instead of Uy. First let f be a simple function,
ie, f =YK, clg, Ej C X measurable, ¢; € C. Then

and

— (f,1)-(1,1).

In order to prove this for general f € L2, we need the Cauchy-Schwarz
Inequality:

|(g,h)| < lgll2]|h|l2 with equality iff cllg(x)]2 = c2|h(x)|2 Vx € X.
Apply Cauchy-Schwarz to h, 1. Then
[(h, 1) < [[h[l2 |12 = [[h][2,
\\,-/

=1
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since u(X) = 1. Take g € L2(X,C, u). Since the simple functions are dense
in L2(X,C, ), there is a simple function f with ||g — f||. < &, & > Oarbitrary.
Letn € IN with

[(U"f, ) — (f,1)(1, )| <e

We also have
UM — U2 = [If —gll2 <e

Cauchy-Schwarz implies:

(U, f) = (U"g, g)| = |(U"f, f) — (U"f,g) + (U"f, ) — (U"g,0)]
< [(UM, f—g)|+[(UN(f—g).0)

< UMl2[If = gllz + |V (f = g)l2]l9]l2

< |

| Tll2e +ellgll2 = e(][ f[]2 + [lg]l2)-
Since ||f|l2 = || f — gll2 + ||9]]2, we have || f||2 + [|g]l2 < 2||g]|2 +&.

(. 1)1, ) — (9, 1)(

(DI = 1(g, )P

= [([. D[+ [(a. D). 1) = (8. 1)])]

< (Ifllz +llgll2) ((f.1) = (9.1))
=(f-g1)<[/f-gll2

< (Il + llall2)[If = gll2 < (2[|gll2 + )e.

Hence,

[(U"g,9) — (9.1)(L.9)| = [(U"g.g) — (U"F, f) + (U"F, f)
(f, )( B+ (£, f) = (9.1)(2,9)]
(

2llgll2 + &) + e+ (2[lgll2 + e)e.

<
This implies (ii).
“(it)= (iii)”: We use (ii) for f + g:

(UMNf+9),f+9) = (f+9 1)1 f+g) = (f,1)(1,f)+(9,1)(1,9)
+ (,1)(1,9) + (9, 1)(1, ).

Since by (ii) (U"f, f) — (f,1)(1, f) and (U"g,9) — (9,1)(1,9), we have

(U™, 9) + (U"g, f) — (f,1)(L,9) + (9, 1)(L, ). (6)
For if instead of f we obtain
i(U"f,g) —i(U"g, f) —i(f,1)(1,9) —i(9,1)(L, ). (7)

Dividing (7) by i and adding it to () gives 2(U"f,g) — 2(f,1)(1,9).
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“(iii)= (i)”: Let f =15 and g = 1. Then
(UPFL0)% = [ F(T"00)g0)du(x) = [ Ty a(a(x)La(x)dp(x)
= [ L1 saetu = p(T"(A)NB)

and similarly
(f,1)12(1,9) e = u(A)u(B).
Hence, (iii) implies

lim u(T7"(A) N B) = u(A)u(B),

n—o0

which finishes the proof. O

4.3 Corollary: Let T be a mixing transformation T on a probability space
(X, u). Then Ut has no eigenvalues on the unit circle except for 1.

Proof: Let U = Ur. Suppose that A # 1, |A| = 1, is an eigenvalue of Ur,
i.e., there exists a nonconstant f € L?(X,C, u) with

(Uf)(x) = Af(x) for almost all x € X.

W.l.o.g. assume that || f|| .2 = 1. We have to show that T is not mixing. For
all n € N we have

(UM, B)iz| = [(A", B)ie] = A [(F, )] = 1.
On the other hand |(1, f)|2 < 1, since by Cauchy-Schwarz
(£ 2)2® < (F, ) 2(L, 1)z = [[F3]12013 = 2.

This is a contradiction to Theorem [Z.2] (ii). O

Consider again the irrational translation T(x) = x + 6, 6 irrational. Then
UT(eZHi(-))(X) — @27i(x+0) _ o276 g27ix
N A
=f =f(x)

So e2mif # 1is an eigenvalue of Ut, which lies on the unit circle. Hence, T
is not mixing.

4.4 Definition: Let T be measure-preserving on a probability space (X, u).
For a real-valued function f € L2(X, u) we call

[ A0 — ([, 10autn)

the n™ correlation coefficient of f.

rm(f) =
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Clear: For a mixing transformation one has rn(f) — 0 for n — oo.

4.5 Example: Consider T(x) = x ++/3—1 (mod 1) on [0,1). The Lebesgue
measure is invariant. For f(x) = x we have [, f(x)dx = 3}, and

(RN

/f(T”(x))f(x)dx:z YT ()% X =
X i—0 S

See the MAPLE program Correlation_Irr. O

4.2 Recurrence and First Return Time

4.6 Theorem (Poincaré’s Recurrence Theorem): Let T be measure-
preserving on a probability space (X, u). Consider E C X with u(E) > 0.
Then almost all x € E are recurrent, i.e.,

k
T™(x) € E for a sequence n ——» oo.

Special situation: X metric space, j(A) > 0 for each nonempty open set A.
Again, T is u-preserving. Choose x € X. Poincaré implies: For every ¢ > 0
T (Be(x)) N'Be(x) # @ for a sequence ny — oo.

Proof (of Poincaré’s Recurrence Theorem): For every n € INg let

Then Np—o En is the set of all points x € X such that T"(x) € E infinitely
often. Put F := E N (Nna~g En). We have to show that u(F) = u(E). If x € F
thereare 0 < n; < ny < --- with T"(x) € E. Fix n;. Then for j > i

T(x) = T " (T"(x)) € E.

Hence, T"i(x) € F. So we know that x returns to F infinitely often. Note
that T-1(E,) = En.1. Hence,

#(En) = u(T*(En)) = p(Ent1):
Furthermore, Eg D E; D E; D ---. Thus,

Z (ﬁ En) = lim 3(En) = p(Eo).

n=0

Similarly,
EcNEDEINEDENED -+,
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which implies

u(F) = u (Eﬂ ﬁ En) = lim 1(En NE) = u(Eo NE) = u(E).

n—oo
=E

since E C Ep. O

4.7 Definition: LetT : X O be measure-preserving on a probability space
(X, n). Suppose u(E) > 0, fix x € E and define the first return time in E by

Re(x) :=min{n e N | T"(x) € E}.

Poincaré guarantees that Rg(Xx) < oo for almost all x € E. Define the first
return time transformation by

Te(x) :=TRE®(x), Te 1E — E.

Question: Are the maps x — Rg(x) and x — Tg(x) measurable and can we
describe their properties and relate them to properties of T?

4.8 Remarks:
e Themap Rg : E — R is measurable: Consider the set
Rg'((—o0,a]) = {x € E|Re(x) < a}, a €R.
For « < 1 this is the empty set. For « > 1 let k = [«] (the smallest
integer greater or equal than «). Then
(X €E|Re(x) <a} =EN (T—l(E) U UT—k(E)) .

Since T is measurable, the sets T—%(E) are measurable, and hence also
Rg*((—o0,a]) is measurable. This proves the assertion.

e ThemapTe:E — E, x— TRE(X)(X), is also measurable: Let
EkZI{XEE|RE(X)=k}, k € N.

Let C C E be measurable. Then

[ee]

Te1(Cc) = | (Ek N T”‘(C)) .

k=1

Hence, T~1(C) is measurable, since T~1(C) is measurable and Ey is
measurable, since Rg is measurable.

Recall that for E with u(E) > 0 the conditional measure on E is ug(C) =

#(C)
H(E)" CCE.
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4.9 Theorem:

(i) IfT is measure-preserving on a probability space (X, i) and if u(E) >
0, then Tg preserves .

(if) IfT is ergodic, then also Tg is ergodic.

Proof:

(i) Only for invertible T with T—! measurable (for general T the proof is
more technical):

H(THA)) = u(A) forall A < pu(A) = u(T(A)) forall A,

since T"Y(T(A)) = T(T-1(A)) = Aforall A C X. Define for every
nelN
An:={x€ A|Rg(x)=n}.

Then A, is measurable and

A = [ J An (disjoint union).

Note that Te(An) = T"(An). We find
He(Te(A)) = pe (TE U A)) = Y ue(T"(A)
(

(i) Ergodicity: Let B C E be invariant for Tg and suppose jg(B) > 0. By
invariance
B=T:'(B)=Tg%(B) =...

Hence,
B= <U T”(B)) NE.
n=0

Since u is ergodic, we have u(Up-o T "(B)) = 1. Hence,
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4.10 Theorem (Kat Lemma): If T is an ergodic measure-preserving map
on a probability space (X, u), and if u(E) > 0, then

/ Redy = 1,
E

ie., fE REd]/lE = ﬁ

Proof: We give two proofs:

(i)

(ii)

For invertible T: Forn > 1 let
En = {x € E|Rg(x) =n}.
Then E, NEy, =@ ifn # m, and

E=JEn
n=1
by Poincaré. Since T is ergodic, for all A,B C X with u(A),u(B) >0
there is k € IN with u(T-"(A) N B) > 0. Hence, there exists no set
A C X of positive measure with u(T¥(A)NE) = 0 for all k € NN,
which implies that for almost all x € X we find k € IN with T%(x) €
E. This implies

G L_J (En). ®)
:(E

Observe that the sets Ej,, T(Ep), T
ergodicity and injectivity of T

n)s--., T""1(Ey,) are disjoint. By

1(TY(En)) = u(Ey) forall k.

Hence, (@) is a disjoint union. We compute

I REdV—Z / Redy = 1 nM(En)@u( X) =1

Proof for not necessarily invertible T: Take x € E and consider
X Te(x), ..., TE(x),..., TE(x), L € N.
Let

L—1
N =) Re(Te(x)).
1=0
Then N is the time duration for the iterates T"(x), n = 1,...,N, to
come back to E exactly L times, i.e.,

N

Z ]lE(Tn(X>) = L.

n=1
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Now apply Birkhoff’s Ergodic Theorem to the map Tg and f = Rg.

Then
15 N
J. Retue = jim 7 2 Re(Te00) = JIm, = e 00)
-1
1
— <A|an_2;nE (T"(x ))) :

Hence, applying Birkhoff’s Ergodic Theorem for T and f = 1 gives

1
Redugp = ——.
/E”‘E H(E)

4.3 Mixing Markov Shift Transformations

Let A = {1,...,k} (symbols, alphabet) and X = J]{" A. The shift T = 6 :
X O is defined by (X1, X2,X3,...) — (X2,Xs,...). The (3, 3)-Bernoulli Shift
on {0,1}:

p(las, .. an)e k1) = (%)n

Markov measures: Are given by a stochastic k x k-matrix P = (pjj) (X pij =
1, pij > 0). There exists an eigenvector 7P = 7, 7 > 0, };; ij = 1. All 7
are positive if P is irreducible, i.e., for all i and j there exists m € IN with
(P™)ij > 0. Markov measure:

V([al, e ,an]t ..... t+nfl) = TTa; Paja; * * * Pay_jan-

This is shift-invariant. u is ergodic iff P is irreducible (then 7 is unique)
(Theorem[3.17).

Question: Can we characterize the mixing property of u via the matrix P?
(i.e., whenis u(6~"(A)NB) — u(A)u(B) for n — oo satisfied?)
If P is irreducible, then (cp. proof of Theorem [3.17)
- j
=y E °
exists and each row of Q equals 7z, and 7r; > 0 for all j.

4.11 Definition: A stochastic matrix A is called eventually positive if for
all n large enough

(A")ij >0 foralli,j=1,...,k
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4.12 Proposition: If A is an eventually positive stochastic matrix, then the
eigenvalue A = 1 is simple (the algebraic multiplicity equals 1) and all
eigenvalues y # 1 satisfy |u| < 1.

Proof: See Robinson [5] or Gantmacher [6]. O

4.13 Theorem: Let P be a stochastic k x k-matrix with eigenvector m =
(rtj) satisfying 7P = 7t, 1 > 0, Y = 1. For A = {1,...,k} let T be
the associated Markov shift transformation on X = []7° A with shift invari-
ant Markov measure . Suppose P is irreducible. Then the following are
equivalent:

(i) T is mixing.
(i) (P")jj convergesto mj forn — oo foralli,j=1,... k.
(iii) P is eventually positive.
Proof: Put Q := limn_e & Yo P". Since P is irreducible, u is ergodic,

and Q exists, each row of Q equals 7, 7r; > 0 for all j.
“(i) = (ii)”: Suppose T is mixing, i.e.,

w(T"(A)NB) — u(A)u(B) forall A,B.
Let A := [j]; and B := [i];. Claim:
(T (A)NB) = m;(P")ji = u(A)u(B) = mjmi.

This shows that (P");; — r; for every i and j, i.e., P" — Q for n — oo.

“(ii) = (iii)”: By (ii) P" — Q and all entries of Q are positive. Hence, for n
large enough, (P");; > 0 for all i and j. Thus, P is eventually positive.
“(iii) = (i)”: It suffices to show

u(T"(A)NB) — u(A)u(B)

for cylinder sets A,B. Let A = [iy,...,ifJ3"tand B = [js,..., 5|05 %
Let J be the Jordan canonical form of P. Since A = 1 is simple and all
eigenvalues u # 1 satisfy |u| < 1, we get

1 ui 1
M, :

1

1
MVI },li
with M;}i — 0 for n — oo. This implies J" — diag(1,0,...,0). Hence,

H 1 vn—1pk
P" converges for n — co. Since -} ;"o P* converges to Q, also P" must
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converge to Q.

n—o0

w(T"(A)NB) = 7P, -+ Pic_sje (PMiiy Pigip -+~ Pir_yip — #(B)u(A).
—_—— —— ——
=u(B) — Qjsiy =7ty :%ilV(A)

O

4.14 Theorem: In Theorem the speed of convergence of P" to Q s
exponential, i.e.,

IP" — Q| < ap"

with constants« > 0, § € (0,1), for some (and then for all) norms in R"*",

Proof: All norms on the vector space C"*" are equivalent: For any two
norms || - || and || - ||’ there are constants ¢y, c; > 0 with

cil|All < A" < co| Al
Let S be invertible with S~1PS = J, the Jordan canonical form. Then
|Al = IstAS|, Aecm,

defines a norm, and
cl|Al < Al < cof| A

for constants ¢, ¢, > 0. Hence,
caf[P"— Q[ < ISTHP" - Q)S| < c|P"—Q]l.
=[|P"—Ql’

Recall: Since P is eventually positive, 1 is an algebraically simple eigen-
value and all other eigenvalues satisfy |i| < 1. Thus,

MVk
Claim:
SH(P"—Q)S=SP"S — 5!QS = J" — diag(L,0,...,0).

Observe that, if all Jordan blocks are one-dimensional, exponential conver-
gence of J" to S71QS is clear. We only have to deal with the problem that
the Jordan blocks may be higher dimensional. Now use the norm

[Alleo := ”}?X!Aij!-
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For a Jordan block M;, = ul + N with |u| < 1,

we have Nk = 0. Hence,

k - -
Mp = ) (k)y”“N‘, n > k.

=0 \J

Let 7 := max{|/1|lco, [[N]loos - - -, [[N*!|oo }. Then for n >k
k=1 /p _
Ml < X (7)) < 2k,
j=0

Observe that 7 and k are fixed and

r]k71|‘M’n — p(k=1)In(m)gnin|u| _ gn[(k—1) '"Q”mel

In(n)

Since == — 0forn — oo and In|u| < 0, this is bounded above for n large
enough by

e"(F) — g" for B with [u| < B < 1.
Together

IMj][ < aB" foraconstanta > 0and g € (0,1).

This shows that
13" —diag(1,...,0)||e < ap",

hence the same for ||P" — Q|| holds. O
Note the difference between irreducibility and eventual positivity:

(01 , (10
e (DE) e (20

Hence, P is irreducible, but it is not eventually positive, since

2n+1
0 1 0 1
(10> :<1O>foralln€]N.
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5 Entropy

5.1 Definition and Elementary Properties

Simple situation (without map): Consider an experiment with uncertainty
described by aset A = {a;,...,ax}. Let p; be the probability of the outcome
aj. Then

Pr4---+pe = 1.

If p; is close to 1, we would mostly obtain a;. If we measure the surprise or
information that we get from some outcome, it would be close to 0, if the
outcome is a; with probability close to 1. How to measure the information?
For the outcome a; the magnitude of information is & Instead we take
log & (pr ~1—log é ~ 0). The expected information from an experiment

IS
K

k

1
Y pilog—=—)pjlogpi.
i—1 Pi i

=1
This is called the entropy of A (the expected information from an experi-
ment). Usually log is taken as logarithm with base 2.

In general: An experiment corresponds to a measurable partition
P: {E]_,,En}
of a probability space (X, A, ). The entropy of this partition is defined as

n l n
H(P) =) pi loga = —) pilogp;,
i=1 I —

i=1

with p; = u(E;j), where pjlogp; := 0if pj = 0. Consideramap T : X O
which is y-preserving. ldea: How much information do we gain by apply-
ing T?

First a simple estimate for the entropy of a partition:
5.1 Lemma: If a partition P consists of k subsets, then H(P) < logk.

Proof: Recall fora > 0

In—a—lo a
Inz _ %%
We have to show )
— ) pilnp; <Ink

i=1
forall py,...,px € (0,1), ¥¥ ; pi = 1. We show that

o i
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over pi,..., Pk > 0with }; pi = 1 equals Ink. A necessary condition for a
maximum is that there is A € R such that

k k
f(pl,..-,pk)=—Zpilnpi+2\<2pi—1>
i=1 i

i=1

has Jacobian equal to zero, and Z'i‘zl pi = 1.

of 1
—=—Inpj—pj—+A=A—-1—Inp;=0
n; Pj — P D Pj
forj =1,...,k. Together with p; + - - - 4+ px = 1 this shows that the maxi-
mum can only be attained if p; = --- = p, = £. Then

Kk k 1 1
—i;pilnpi:—i;EInR:—Inizlnk,

as claimed. (Since there is a maximum and it cannot be attained on the
boundary, the necessary condition is also sufficient.) O

Given two partitions P and Q, the join of P and Q is the partition P v Q
consisting of all sets of the form BN C with B € P and C € Q. Analo-
gously, the join \/{._, P; of finitely many measurable partitions Py, ..., Py is
defined. Fix a partition P and consider T : X O. Let

TP ={T7VE,....TIE}, P={EL....E}.
This again is a partition. Let
Pri=PVvTtPv.. . vT-(-Up,

Define the entropy of T with respect to P as

h(T,P) = lim ZH(Py). ©)

n—oo N

Finally, the entropy of T is
h(T) :=suph(T,P),
P
where the supremum is taken over all finite measurable partitions of X. We

have to show that the limit in (@) exists. To this end, we use the following
two lemmas.

52 Lemma: Let P = {Cy,...,C/} and Q = {Dy,...,Ds} be measurable
partitions of X. Then

H(PV Q) <H(P)+H(Q).
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Proof: We have

H(PVQ) = ZyCﬁD)Iogy(CﬁD)
1(CiN D;)
= _gy(cl N Dj)'Og V(CI) V(CI) J

= — 2_w#(CinD;)logu(Ci)
1)

3 LH(CiNnDy) u(CiND;)
LHC) = ey 9 e

1)

= —Zu ) log 1(Ci)

=H(P)

u(CnD)  p(CinD)

‘242” wey % ue)

Consider the map ¢(x) = xlogx. ¢ is convex. Jensen’s Inequality (Elstrodt
[7]): Let f : X — R be integrable on a probability space (X, ) and ¢ : R —

IR be convex. Then
(/ fdy) /goofd]/t

Claim:

p(CinDj)  u(CiND;j)
~ LG = ey 100 = ey < —u(Dy) logu(Dy). - (10)

This implies H(P v Q) < H(P) + H(Q). Define
=)
i
Then [, fdu = u(Dj) and therefore

(/ fdy) /fdylog/fdy p(Dj) log (D;).

On the other hand:
/q)ofdy - / £(x) log f (x)dpu(x)
X
/ Z C N DJ) 1¢,(x) log lz%hk(x)

i k

yCﬁDJ)

1c,(x), f: X —=R.
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_ V C N Dj) u(Ck N Dj)
E ) log [; 1(Co L, (x )] dp(x)
“MCQD) “M(CiﬁDj)
-2 e ey
Ci -
= ;y(ci N Dj) log %
This proves (10). O

5.3 Remark: The equality H(P Vv Q) = H(P) + H(Q) holds if for all i and
j we have 1(Ci N Dj) = u(Ci)u(D;). Then it follows

—E CQI;D) y(i(mD —Zﬂ D;) log (D).
2,1_/

Two partitions with this property are called independent. Actually H(P Vv
Q) = H(P) + H(Q) holds if and only if P and Q are independent.

54 Lemma: Let (an)nen be a sequence of real numbers with a, > 0 and
an.m < ap + ay foralln,m € IN. Then

. a . a
lim =2 = inf 2 = a.
n—oo N nelN N

Proof: Fix e > 0. Thereis N € IN with § < a+e¢. For every n € IN we can
Writen:kN+rwithk re Noand 0 <r < N. Then

an k a~N ar
k < — —=—+—
< [ aN + ar] KN aN —|— N +
Since & — 0 forn — oo, we find ng € N such that a—n” < a+ 2¢ for all
n > ng. This implies the assertion. U

Now we can conclude that the limit in (@) exists: Consider the sequence
(H(Pn)). Note that, since T is u-preserving, for all j € IN and every parti-
tion P = {Ej,...,En} we have

H(TP,) = —Zu ) log u(T71(Ei))
= —ZP‘ ) log (i) = H(P). (11)
Hence, for all n, m € IN we obtain
H(Pnim) = HEVTPv...vT 0-UpyTpy...y7-(im-1)p)
=Pn =T-"Pn
Lem.5.2]
TETHPY) + HTPo) B HPY) + H(Pw).

By Lemmal.4it follows that the limit (@) exists.
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5.5 Lemma: Let P be a refinement of the partition Q, i.e., the elements of
Q are unions of elements from P. Then

H(P) > H(Q).

Proof: Let @ = {Dy,...,Dr}. We have H(Q) = — }; u(D;) log #(D;) and
D;j is the disjoint union of sets C;, € P. Hence, u(Dj) = Y; #(Cj), which
implies

H(Q) = _ZZJM(CJ})IOQ ZV(CJ'i)
i i .

———
>pu(C;j,) for all k

< =22 n(Cy)logu(Cy) = H(P).
joi

5.2 Conditional Entropy

If we want to compute entropies, we will have to discuss several ques-
tions:

e It seems extremely difficult to compute the supremum h(T, P) over all
partitions.
Question: When does there exist a partition P with h(T, P) = h(T)?

e For doing computation it will be essential to understand precisely what
happens when we refine a partition. Up to now, we only know

H(P) > H(Q) if P refines Q.

Let us start with the following observation on measurable partitions of a
measure space (X, A, u):

X = D;U...UDy.

It does not matter, if we change D; only in a set of y-measure 0, hence we
consider measurable partitions mod 0: This means: P and P’ are identified
if there is a set A with u(A) = 0, such that the restrictions of P and P’ to
X\ A coincide. Furthermore, partition sets of measure 0 do not play a role,
so usually, we will assume that all partition sets have positive measure.
Finally, sometimes we will also allow countable partitions instead of finite
ones.

Let? = {Ci | i € |} be a measurable partition and recall

H;{(P) = — EH(C,) |Og ]l(C,)
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For x € X let Cp(x) be the unique element of P containing x. The function

Ip(x) = —log j(Cp (x))
is called the information function of P (defined outside of the set of measure
0 with u(Cp(x)) = 0). Then

P) = [ It = Y p(C)(~ logu(Cy))

since on every element of P 1p(x) is constant.
Next write for the conditional probability
u(ANB)
u(B) -
Interpretation: This is the probability of A provided B occurs. A and B are

called independent, if u(ANB) = u(A)u(B), hence, in this case, u(A|B) =
#(A) (occurrence of B does influence occurrence of A).

#(A[B) =

Next we introduce the conditional entropy.

5.6 Definition: Let P = {C, |« € 1} and Q = {Dg | B € J} be two
measurable partitions of (X, ). The conditional entropy of P with respect
to Qs

H(P|Q) := — ) u(Dg) ) 1(Cu|Dg) log (Ce|Dp).

Bel wcl

The intuitive meaning of the conditional entropy H(P|Q) is that it is the
expected amount of information gained by the experiment P given the re-
sults of the experiment Q.

5.7 Remark: If @ = {X} is the trivial partition, then H(P|Q) = H(P).
Using an information function, one can write the conditional entropy as

H(PIQ) = [ Ip.otn
where Ip ¢ is the conditional information function
Ip,0(x) = —log u(Cp(x)|Do(x))-

5.8 Remark: Denote by Po, the partition of Dy into the sets Dg N Cy, & € 1,
such that y(Dg N C,) > 0. Then

P‘Q ZV Dﬁ log PDB)
el

ZﬁZJV(Dﬁ < Zﬂﬂ )log ug(C ))
_ #(DpNCa) #(DpNCy)
=~ L) s lea s

pel
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Next we collect a number of basic properties.

5.9 Proposition: Let (X, .A, u) be a probability space and let P = {C, | a €

1}, Q =

{Dg| B €ltand R = {E, | v € K} be finite or countable

measurable partitions of X. Then the following statements hold:

(i)
(i)
(iii)
(iv)

0 < H(P|Q) < H(P).

H(P|Q) = H(P) iff P and Q are independent.
H(P|Q) = 0 iff Q is finer than P.

IfR > Q,thenH(P|R) < H(P|Q).

Proof:

(i)

(i)

(iii)

¢(x) = xlog x is a convex function. Hence,

0 < H(PIQ) =—) u(Dp) ) ¢(1(CulDp))

Bel wel

= Y Y u(Dp)(u(CxDp))

acl Bel

@ convex C N D )
< Z % <E IS D,B ( ) ARl 2 )
€l ,BeJ B

= - E @(1(Cy)) = H(P).

acl

Recall ¢(x) < 0iff x € (0,1). H(P|Q) = 0 implies for every f
(1(Dg) > 0): ¢(1(Cy|Dg)) = 0, and consequently 1(C,|Dg) € {0,1}.
Hence,

]/l(Ca N Dﬁ) =0 or ]/l(Ca N Dﬁ) = ‘u(D‘B),
i.e, C, N Dg = @(mod 0) or Dg C Cy,(mod 0). Thus, Q@ > P (mod 0).
The converse is obvious.
If H(P|Q) = H(P), then equality must hold in the inequality used
for (i), then equality must hold for every summand, i.e.,

p(u(Cy)) = ¢ ( ) V(Dﬂ)V(CaDﬂ)>

BeJ, 1(Dg)>0
= Y u(Dp)e(u(CulDp)).

Bel, u(Dg)>0

By strict convexity of ¢ this implies that 3(C,|Dg) must be indepen-
dent of B and hence 1 (C,|Dg) = u(Cy). Hence, P and Q are inde-
pendent. The converse is obvious.
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(iv) Suppose R is a refinement of ©Q, R > Q (mod 0). Consider, for D €
Q, the conditional measure

uo(-) = u(-|D).
Then
H,o (PIR) < H,p (P) by (i).
Now

H(P|R) = H(P|QVR) = Zu ) Y 1(Cu|E,) log p(CalE,)

u(CyNDgNE,) #(CyiNDgNE,)

= — log
Z'y ;Dﬁy( ); u(DpNE,) u(DpNEy)
—_———
=p(Dg)

< ;MDﬁ)HyDﬁ(P) = H(P|Q).

:_H}‘D/S (P‘R)Z_HyDIS(P)

O

5.10 Proposition: Under the assumptions of Proposition the following
statements hold:

(i) H(PV Q|R) = H(P|R) + H(Q|P V R). In particular, H(P V Q) =
H(P) + H(Q|P).

(i) H(PV QIR) < H(P|R)+ H(Q|R). In particular, H(P V Q) <
H(P) + H(Q).

(iii) H(P|Q)+H(QIR) > H(P|R).

(iv) If A is another probability measure on X, then for every measurable
partition P and for every p € [0, 1]

PH(P) + (1 = p)HA(P) < Hpppa-pa(P).

Proof:
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(i) We have

H(PVQIR) = — ZP‘(Ev) Z.”(Crx N D/S|E7) log 41(Co N Dﬁ’Ev)

Y ap
(CxNDgNE,)
= _Q’Z&:V”(CWQD/SQEV)IOQV D‘V(Ef) E
= _a%yy(cam DsNE,) Iog%
- T uenopne g ST
— ~ L og M P v Ry
&y

and

u(CeNE,NDg) pu(CyNE, N Dp)
H(QIPVR) = — C.NE 0g
(Ql ) ;Y:‘u( 7)§ u(CaNEy) #(CaNE,)

_ n(CuN Ev) n(CuN Ev)
HPIR) = = LrE) L= 9 ey

Hence,
H(PVQIR) =H(P|R)+H(Q|PVTR).

(if) This follows from (i):
H(PVQIR) = H(PIR) +H(QIP VR) < H(PIR) + H(QIR),
since PVR > R.
(iii) Note that by (i) and (ii)
HRIPY Q) LH(PVRIQ) - H(PIQ) £ H(RIQ).
Using (i) several times we find

H(P|Q) + H(QIR)

H(PV Q) —H(Q) +H(RV Q) — H(R)
H(PV Q)+ H(RIQ) —H(R)
H(PVQVR)—H(RIPVQ)+H(R|Q) — H(R)
(
(

—
=

—
=

H(PVQVR) - H(R)

H(PVR) - H(R) L H(PR).

AV AVARN]

(iv) This follows from convexity of ¢.
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5.11 Corollary: For two finite measurable partitions P and Q let
dr(P, Q) := H(P|Q) + H(Q|P).

Then dr is a metric on the set of all equivalence classes (mod 0) of finite
measurable partitions of X. It is called the Rokhlin metric.

Proof: dg(P,Q) > 0 isclear. If dg(P,Q) = 0, then H(P|Q) = 0 and
H(Q|P) = 0. Hence, @ < P and P < Q, which implies P = Q (mod
0). Symmetry is clear by definition. Finally, the triangle inequality follows
from Proposition B.10 (iii):

dr(P,R)

H(P|R) + H(R|P)
< H(P|Q) + H(QIR) + H(R|Q) + H(Q|P)
= dR(P, Q) +dR(Q, R)

5.3 Properties of Entropy

We analyze properties of the entropy h(T, P) as a function of the partition
P.

5.12 Proposition: Let T : (X,u) O be a measure-preserving map on a
probability space and let P = {C, | « € 1} and Q be finite measurable
partitions of X. Then the following statements hold:

(i) 0<limsup, .. (—% logsupcep, y(C)) <h(T,P) < H(P).

(i) h(T,PVv Q) <h(T,P)+h(T,Q).

(iii) h(T,P) <h(T,Q)+ H(P|Q). In particular, if Q is a refinement of P
(P < Q), thenh(T,P) <h(T,Q).

(iv) |h(T,P)—=Nh(T,Q)| < H(P|Q)+ H(Q|P) = dr(P, Q) (the Rokhlin
Inequality)
Proof:
(i) The first inequality is obvious, the last follows from Ex. 1 on Sheet 9:

vn prop. 5.9 (i)
h(T,P) = lim H(P|T1P,) < H(P|T 1Py) < H(P).

n—oo

6This shows that h(T, -) is a Lipschitz continuous function with Lipschitz constant 1 on
the space of finite measurable partitions with the Rokhlin metric.
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(ii)

(iii)

The middle inequality follows, since for every partition R =
{Ey [ 7 €K}

—Iogsgpy(Ev) = inf ngg

=—log u(Ep(x))

Then
H(R) = / Irdy > —logsup u(E,).
X y

This shows that for every n > 1

—log sup u(C) < H(Py).
ceP,

Hence,

h(T,P) = lim EH(Pn) > limsup (—% log sup y(C)) .

n—eo N n—c0 CePy
We have
(PVQa=(PVQVT YPVQV---vT " U(PvQ) =P,V Q.
Hence, by Proposition [5.10/ (i)
H((PV Q)n) = H(PnV Qn) = H(Pn) + H(Cn|Pn)
and by Proposition[5.9(i)

h(T, PV Q) = lim ZH((PV Q)n)

n—oo N

— Jim = [H(P) + H(Qa|Po)]

n—o N

.1 .1
< i, H(Pn) i, T H(Qn)

— h(T,P) +h(T, Q).

The particular case is clear, since P < Q implies H(P|Q) = 0 by
Proposition 5.9 (iii). Further we obtain

H(Pn) < H(Pn Vv Qn) = H(Qn) + H(Pn’Qn)-
Note that

Pr=PVT iPv..vT "Up=pyTip _,.
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Hence,

73\/T_173n_1’Qn)

P|Qn) +H(TPy_1|P Vv Qn)

P|Q) + H(T Pn_1|Qn)

P|Q)+ H(TPIT1Q) +H(T #Pn_2|Qn)
=H(P|Q) by invariance

nH(P|Q).

H(Pn|Qn) =

VANVAN

IN

The last inequality follows inductively. Thus,

(T, P) = Jim TH(Py) < fim = [H(Qy) + nH(P|Q)]

= h(T, Q)+H(7’\Q>-
(iv) This follows immediately from (iii).
O

5.13 Proposition: Under the assumptions of Proposition the follow-
ing statements hold:

(i) h(T, T-YP) =nh(T,P) and if T is invertible, h(T,P) = h(T,TP).

(i) h(T,P) = h(T, \/I 0 'P) for all k € IN, and if T is invertible,
h(T,P) =h(T,VE_, T ) forallk € IN.

Proof:
(i) This follows from the invariance property, since

H(T'P)y) = H(T PV T 2P V... vT "P)
= HPVT PV ... vT-(=UP) = H(P,)
and
1 _ _
h(T,P) = lim ~H(Py) = lim H((T"*P)n) = h(T,T"P).

For invertible T the proof works analogously.
(ii) Observe that

k
(\/ T‘P> = (PVT’lp\/-'-\/T’kP)n
i=0 n

=Pv..vT-(Up_p
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and hence,

h <T,\k/Ti73> = lim %H(PM)

. n—oo
i=0
. n+k 1
= lim —— = H(Pn)
\\,—/
—1
= Jim = H(Poi) = h(T, P).

Again, for invertible T the argument is completely analogous.
O
Recall: The entropy of T is h(T) = sup, h(T,P). We want: not all finite
measurable partitions, but a subfamily.
5.14 Definition: A family P of finite measurable partitions is called suffi-
cient, if
(i) for noninvertible T the partitions Q with

K
Q< \/ TP forsomek e NandP € P
i—0

form a dense subset of the set of all finite measurable partitions with
respect to the Rokhlin metric.

(if) for invertible T the same holds for the partitions Q with
k - ~
Q< \/ T'P forsomek € N andP € P.
i=—k
5.15 Theorem: For every sufficient family P it holds that

h,(T) = sup h(T,P).
Pep

Proof: Let T be noninvertible. Let R be an arbitrary finite measurable par-
tition. Fix e > 0 and find P € P and k € IN such that for some partition Q
with

k
Q< \/T'P
i=0

one has
dr(R, Q) = H(R|Q) + H(QIR) < .
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Then, using the Rokhlin Inequality,
h(T,R) < h(T,Q) +dr(R,Q) <N(T,Q) +e

h (T, \k/ T—iP> +e=h(T,P)+e

i=0

VAN

The last equality follows from Proposition[5.13|(ii). The proof for invertible
T works analogously. O

5.16 Proposition: Assume that y is a non-atomic Borel measure on a com-
pact metric space X, i.e., it is defined on the c-algebra generated by the
open sets and

i ({x}) =0 forallx € X.

Then every family (P¥)cn Of finite measurable partitions with

. k—
max diam C —= 0
Cepk

is a sufficient family.

Proof: Let R = {E, | v € K}, u(E,) > 0, be afinite measurable partition of
X. Lete > 0. We show that there is k € IN such that for a finite measurable
partition Q < Pk

dr(R, Q) = H(R|Q) + H(Q|R) <.

Such a partition Q consists of (finite) unions of elements of PX. Let E, € R.
Choosing k large enough one can let

#(E; N Dp)
be arbitrarily close to 1(Dg) for some Q < P¥, Q = {Dg | B € J} (Here
regularity of Borel measures is used!) Thus,
u(E, N Dpg)
#(Dg)
can be made arbitrarily close to 1. Since ¢(x) = xlog x is continuous with

¢(1) = 0, one can make
(V(Ev N Dﬁ))

(Dp)
be arbitrarily close to 0, for each of the finitely many E,. Thus, choosing k
large enough,

_ #(E, N Dg) #(Ey N Dg)
HIRIQ)N = =21 L um,y 99 (py)

v

L #(Ey N Dp) €
= ;P‘(Dﬁ);ﬁb( 4(Dy) ><2-
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Similarly, one can get H(Q|R) < £. O

5.17 Definition: A partition P is called a generator if P = {P} is a suffi-
cient family.

Thus, a generator P has the property that the partitions Q with
k .
Q< \/T'P="P
i=0

are dense in the set of all finite partitions.
5.18 Corollary: IfP is a generator for T, thenh, (T) = h,(T,P).

5.19 Proposition:

(i) LetS: (Y,v) O beafactorof T: (X,u) O (ie,Sand T are measure-
preserving and there is a measure-preserving ¢ : X — Y with®oT =
So®.) Thenh,(S) < h,(T).

(i) If Ais invariant for T with u(A) > 0, then
hy(T) = 1(A)hya (T) + (X\NA) Dy (T),

where i and px, 5 are the conditional measures on A and X\ A, re-
spectively.

Proof:
(i) For any measurable partition Q of Y

d1Q = {qu(D) IDe Q}
is @ measurable partition of X and, since ® is measure-preserving,
H,(R1Q) = H,(Q), hy(T,R71Q) =h,(S, Q).
Thus,

h,(T) = suph,(T,P) > suph,(T,® *Q) = suph,(S, Q) = h,(S).
P Q Q

(ii) Let P be a measurable partition of X and define the partition Q by
Q = {A,X\A}. We may replace P by P V Q (since we are interested
insup, h(T,P)). Hence, P > Qand T~J(A) C A. Thus,

H(Pn) = — ). u(D)logu(D)
DePn
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= — ) u(D)logu(D)+ Y u(D)logu(D)

DePn DePn
DCA DCX\A

= —u(A) Y na(D)logpa(D)

DePn
DCA

— u(X\A) Y px\a(D)logxa(D)

DePn
DCX\A

— [1(A)log(A) + u(X\A) log u(X\A)]
= p(A)Hun (Pn) + u(X\NA)Hyiy o (Pn)
— [n(A)log(A) + u(X\A) log u(X\A)].
Multiplying both sides by % and letting n go to infinity, yields the
assertion.
O

5.4 Examples of Calculation of Entropy

One will expect that the rotation R : [0,1) O, x — X + a« (mod 1), has en-
tropy zero. The easiest way to see this, is to take the family

P={PM : NeN}

of partitions into N equal intervals. This family is sufficient by Proposition
The joint partition

has not more than Nn elements (exactly that many for « irrational.) Hence,
by Lemma5.1]

H (\/ RiPn> < logNn = log N + logn.

Thus,
h (R,P(”)> < lim = (Iog N + logn) = 0.

Analogously one shows that the entropy for the rotation on the 2-torus is
zero.

1,2,k X = [I°A

Now: Entropy of Shift Transformations: A =
) — (X2,X3,...). The standard

(sequences of symbols), T : X O, (Xq, Xz, ...
partition of X is Py, given by

[Si]I{(Xl,Xg,...)’X1=Si}, SiIi, I=1,,k
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Then T-1[si] = {(x1,%2,...) | X2 = s;}. Hence,
Pr=PoVT PV ... v T-(=Up,
consists of all cylinder sets of the form
[S1,...,Sn] = {X € X | Xy =51, X2 =52, ..., Xn =Sn}
for s; € A. Suppose the symbol s; has probability p; > 0, 2, 1P =

Define
U ([51, e ysn]ﬁnil) = P1--- Pn.

This Bernoulli measure is shift-invariant. What is the entropy of this mea-
sure?
h.(T) =supH(T,P) = sup lim H(Py).

n—oo
P

Claim: The standard partition is generating.
Proof: See Exercise 1 on sheet 10. O

5.20 Theorem: The entropy of the (ps, ..., px)-Bernoulli Shift is given by
k
— Y pilog p;.
i=1

Proof: We have to compute the entropy
H (Pon) = H (Po VT ipyv---v Tf(nfl)'Po> .

The partitions T~Py and T-IPy with i # j are independent. Hence, Propo-
sition[5.9/(ii) and (i) imply

(730 n) = H(Po) + H( l'Po) -+ H(Tf(nfl)'Pol = nH(Po),
=H(P) =H(Po)

since H(T~1Py) = H(Pp) by invariance of u. Now

H(Po) = —log}_, u([si]) log u([si]) = — log!_, pilog p;

and hence,

1
hy, (T )—nlgf;nH(Pon)—H (Po) = Ep.logp.
H(Po)

72



Next we compute the entropy of Markov shifts. Let P be a stochastic matrix
(pij > 0, X5 pij = 1). Assume that P is irreducible, i.e., for all (i, ]) there is
n € IN such that (P™);; > 0. Then Perron-Frobenius implies the existence
of a left eigenvector 7t for the eigenvalue 1 with r; > 0 fori = 1,...,k.
Define a Markov measure u on the cylinder sets by

t+n—-1\ __
M ([51: -+ Sny ) = TTs;Psysp ** * Psp_ysn-

5.21 Theorem: The entropy of the Markov shift, given by the matrix P, is

K
h(T) = — ) mipijlog pij.
ij=1

Proof: The standard partition Py again is a generator. An element of Py 41
is given by [s, ..., sn]. It has measure

U ([s0y.--,sn]) = TTsy Psosy * ** Psy_15n-

In the following we use the abbreviation ¢(x) = x log x. We obtain

H(Pn+1):— Z 1 ([s0,...,5n])log s ([so, . . .,Sn])

.Sn=1

= — Z TTs Psgsy * - psn 18n |Og(7'[50 Psos; - psn,zsn,l)

+ Psp_ssn |Og psn,lsn)

== E <Z p5n15n> ¢ (TTsoPsosy =+ * Psn_asn 1)

$0s.+4Sn—1 \ Sn

=1

- Z < Z NSopSosl"'psnzsn1>¢(psnlsn)-
So

Sn—1:5n \S0s-+=s Sh—2
We have

Z TTsoPsosy * * " Psn_osn_1 = 7Tsy_1s
$0,.-Sn—2

since this is the probability to go from some symbol sq over some sequence
of symbols in (n — 1) steps to the symbol s,_;. Hence,
H(Pni1) = — Y, ¢ (MsPsoss - Psposns) = 3, Tsn 19 (Psyssy) -

S0,-+Sn—1 Sn—1:5n

=H(Pn)
By induction we obtain

H(Pn+1) = H(Po) —nanb pij) Zn. Iogn.—nZn.p., log pj;.
This implies the assertion. O
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5.22 Remark: The (3,3)-Bernoulli Shift (shift on 2 symbols) with py =
p1 = 3 is isomorphic to the doubling map Tx = 2x (mod 1) on [0,1). En-
tropy is invariant under isomorphisms. Hence, the entropy of the doubling
map is

2
h(T) = —)_pilogpi = —3log3 — 3 log 3 = log 2.
i=1
5.23 Remark: The main result, which started interest in entropy is due to

Ornstein (1970). He could show: If two Bernoulli Shifts have the same
entropy, then they are isomorphic.
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